Ген речи. Ген языка


Несмотря на разнообразные трюки, которые умеют проделывать лабораторные мыши, ученые всё пытаются расширить арсенал фокусов своих подопечных. Сверхвыносливые, сверхсильные, сверхбыстрые, сверхустойчивые или, наоборот, сверхвосприимчивые к самым опасным заболеваниям - на этом список генетически приобретенных по воле учёных способностей не ограничивается.

Вольфганг Энард из лейпцигского Института эволюционной антропологии имени Макса Планка и его коллеги поставили перед собой практически неразрешимую задачу - научить мышей говорить.

Ну или хотя бы пересадить мышам человеческую версию гена речи Foxp2.

У мышей, да и других зверей, в том числе и приматов, этот ген, а точнее, последовательность ДНК, кодирующая транскрипционный фактор Foxp2, тоже есть, но отличается от человеческой двумя точечными мутациями. Считается, что именно эти мутации дали человеку уникальную способность как говорить, так и различать речь. В оценках возраста этой мутации ученые расходятся - от 100 до 500 тысяч лет. Вопрос возраста и эволюции Foxp2 стал даже чуть ли не главной темой в обсуждении расшифрованного недавно генома неандертальцев.

Однако эффекты этого транскрипционного фактора пока остаются непонятными. Очевидно, что такой сложный процесс, как речь, не может обеспечиваться всего лишь одним геном, необходимо соответствующее строение дыхательных путей и голосовых связок. Кроме того, головной мозг и орган слуха должны быть способны эту самую речь воспринимать и различать. Foxp2 как нельзя лучше подходит на роль «регулятора» - ведь это транскрипционный фактор, регулирующий работу самых разнообразных генов (каких - до конца неизвестно). То есть одной мутации в гене Foxp2 достаточно, чтобы изменить строение, свойства и функции одновременно в нескольких тканях - будь то нервная или дыхательная система.

Foxp2 стал «геном речи» относительно недавно: в конце прошлого века выяснилось, что именно его мутации - причина врожденных дефектов восприятия речи.

А вот механизм действия, равно как и все функции этого фактора, до сегодняшнего дня оставались неизвестными. Забегая вперед, скажем, что и после работы Энарда осталось много вопросов, хотя ученым и удалось описать эффекты человеческой версии Foxp2 на мышах. Авторы публикации в Cell, перечисление которых вместе с институтами заняло всю первую страницу статьи, попытались ответить сразу на два вопроса: какова роль Foxp2 в целом и в чем отличие эффектов человеческого Foxp2 от мышиного.

Для этого им пришлось сначала вывести мышей гетерозиготных по этому гену - Foxp2wt/ko (wild type/knockout), то есть один вариант этого гена был «диким» - мышиным, а второй - выключен совсем. В дополнение к этой группе ученые получили и мышей Foxp2hum/hum (human), у которых в обеих позициях стоял человеческий вариант гена. После чего Энард и коллеги, среди которых был и «главный специалист» по геному неандертальца Сванте Пеэбо, оценили мышей почти по трём сотням физиологических критериев.

«Очеловеченные» мыши так и не научились говорить и даже отличались меньшей секрецией дофамина и угасшим исследовательским энтузиазмом, зато издавали количественно отличающиеся ультразвуки.

Отсутствие же одной копии гена приводило к абсолютно противоположному эффекту, что лишний раз доказывает роль человеческой версии Foxp2 во всех наблюдаемых феноменах. Причина этих отличий - в базальных ядрах конечного мозга. Именно здесь происходит перенаправление сигналов от коры больших полушарий к мышцам, и здесь же «замыкаются» многие рефлексы. Снижение активности в поиске и изучении новых объектов объясняется низким уровнем дофамина - медиатора удовольствия, стимулирующего к подобному поведению.

Что же касается главной темы для обсуждения - влияния на речь, то здесь большая часть отличий оказалась незначимой, хотя авторы и смогли найти небольшую разницу:

«гуманизированные» мыши оказались склонны издавать больше отдельных звуков и использовали для этого меньшие пиковые частоты по сравнению с нокаутными по одному из генов.

Впрочем, это демонстрирует лишь роль конкретной человеческой версии, а не Foxp2 в целом.

Судя по всему, Foxp2 оказывает наибольшее воздействие на распознавание речи и звуков, а так же на центральную регуляцию речи. Самое интересное так и не научившиеся говорить при жизни мыши рассказали учёным уже после препарирования:

У «очеловеченных» мышей средняя длина коротких отростков нервных клеток - дендритов - оказалась на 22% больше.

Это способствует образованию большего количества контактов между клетками, а следовательно, и более эффективной работе нервной системы и, в частности, слухового анализатора.

Тем самым Энард в очередной раз подтвердил тот факт, что эволюция в рамках такой совершенной группы, как звери, шла в основном благодаря транскрипционным факторам, а не генам в привычном понимании этого слова. Осталось ещё поискать Foxp2 у попугаев, и вопрос о его роли будет окончательно разрешен.

Сравнение целых геномов разных видов помогло разобраться в том, почему люди и шимпанзе столь отличаются друг от друга, несмотря на большое сходство их геномов. За последние годы были секвенированы геномы тысяч видов (в основном микроорганизмов). Оказалось, что наибольшее значение имеет то, в какой именно части генома происходят изменения, а не общее их количество. Другими словами, для создания нового вида не нужно сильно изменять геном. Для того чтобы наш общий с шимпанзе предок превратился в человека, не было необходимости ускорять ход молекулярных часов в целом. Секрет состоял в том, чтобы быстро внести изменения в те места, где они окажут значительное влияние на функционирование всего организма. Таким примером, наряду с последовательностью HAR1 , является быстроизменяющаяся последовательность, содержащееся в гене FOXP2.

Известно, что она связана с речью: в 2001 г. было показано, что люди, несущие мутации в этом гене, не способны производить некоторые быстрые движения мышц лица, необходимые для артикуляции слов, несмотря на то что они обладают нормальными когнитивными речевыми способностями. В норме данная последовательность имеет несколько отличий от аналогичной у шимпанзе: две замены нуклеотидов, изменивших ее белковый продукт, и множество других замен, которые, видимо, повлияли на то, как, когда и где этот белок используется в теле человека.

Недавнее открытие пролило некоторый свет на вопрос о том, когда у гоминидов появилась пригодная для речи версия FOXP2. В 2007 г. ученые из Института эволюционной антропологии Макса Планка в Лейпциге секвенировали FOXP2, извлеченный из останков неандертальцев , и обнаружили, что эти вымершие люди обладали современной человеческой версией этого гена. Вполне вероятно, что они могли разговаривать так же, как и мы. Новейшие оценки времени обособления эволюционных линий неандертальцев и современного человека указывают на то, что новая форма FOXP2 появилась не позднее полумиллиона лет назад. Однако большинство признаков, отличающих человеческую речь от звуковой коммуникации у других животных, обусловлены не физическими данными, а

Речевой ген помогает перейти от одного этапа обучения, на котором происходит понимание и осмысление задачи, к другому, когда нужный навык выучивается до автоматического состояния.

Речевые способности обеспечиваются работой специального нейронного аппарата, а структура нейронных сетей зависит от генов, поэтому совершенно правильно было бы предположить, что у нас есть особые «гены речи». Однако до 2001 года учёные почти ничего не знали о том, какие гены влияют на речь. Ситуация изменилась после исследования одной семьи, члены которой страдали от дефектов речи, причём проблемы у них были не только с произношением, но и с синтаксисом, и с пониманием чужой речи. Оказалось, что в этой семье мутирован ген FOXP2 , который мгновенно стал «звездой» в научном мире.

Наша способность к речи возникла благодаря нескольким мутациям в речевом гене. (Фото H. ARMSTRONG ROBERTS / Corbis).

Стриатум в мозге человека. (Фото Википедия).

Вскоре выяснилось, что он отвечает не только за внятность речи: по-видимому, человек вообще научился говорить с помощью FOXP2 . Его, разумеется, обнаружили и у шимпанзе, но у них он отличался от человеческого по двум нуклеотидным «буквам» в ДНК; вероятно, мутации помогли превратить животные звуки в сложноструктурированную речь. В 2009 году был поставлен любопытный эксперимент: человеческий FOXP2 вводили в геном мышей, после чего последние, конечно, не начинали говорить человеческим голосом, но звуки, которые они издавали, заметно усложнялись. Дальнейшие исследования показали, что у мышей с человеческим геном речи менялась активность нейронов стриатума (или полосатого тела), который, среди прочего, вовлечён в процессы обучения. Более того, с этим геном увязали даже пресловутую женскую болтливость - после того, как оказалось, что уровень белка FOXP2 у девочек почти на треть выше, чем у мальчиков. Однако детали того, как этот ген помогает нам освоить речь, оставались во многом неясными.

У нас и у животных обучение происходит в два этапа. На первом задача разбивается на несколько шагов, которые мы постепенно учимся выполнять. В случае, например, с ездой на велосипеде мы берём в руки руль (и стараемся держать его ровно), затем ставим ноги на педали, а потом начинаем их вращать. Поначалу эта последовательность действий требует от нас полной концентрации, но со временем начинается «бессознательная» часть обучения, когда мы учимся ездить всё лучше и лучше, просто повторяя все вышеописанные действия. То же самое происходит и с выучиванием языка: сначала мы концентрируемся на произношении и смысле отдельных слов, потом же речь приобретает всё большую беглость, и, в конце концов, мы можем произнести «добрый день» на автомате, не задумываясь, как и что мы говорим.

Исследователи из (США) решили выяснить, какому из этапов обучения нужен речевой ген FOXP2 . В эксперименте обычные мыши и мыши с человеческим геном должны были найти пройти лабиринт, чтобы получить угощение. «Очеловеченные» животные быстрее понимали, каким маршрутом было бы быстрее добраться до еды, однако, когда лабиринт организовывали так, чтобы этапы обучения можно было разделить и понаблюдать отдельно друг от друга, никакой разницы между мышами не было.

Тогда возникла гипотеза, что речевой ген помогает переключаться между разными фазами обучения. Дальнейшие опыты, описанные в статье в Proceedings of the National Academy of Sciences , это предположение подтвердили: мыши, освоившие пошаговый этап задания, быстрее переключались на фазу обучения повторением, если в их геном вводили человеческий FOXP2. Эффект удалось увидеть и на клеточном уровне: в полосатом теле за разные этапы обучения отвечают разные зоны, и та, что отвечала за обучение путём повторения, у мышей с человеческим геном активировалась эффективнее.

То есть можно сказать, что человеческий вариант гена FOXP2 (возникший, как считается, около 200 тыс. лет назад) открыл нашим предкам обучение путём повторения - человек не просто мог произнести слово и понять его значение, но воспроизведение этого слова стало автоматическим. Расширившиеся возможности общения в коллективе помогали выживать отдельным индивидуумам, так что новая версия гена получила эволюционное преимущество. Впрочем, вряд ли развитие речи у человека произошло «по воле» лишь одного гена. Очевидно, тут задействована целая генетическая сеть, в которой FOXP2 - лишь одно из звеньев. Так, год назад исследователи из Медицинской школы Университета Джонса Хопкинса (США) опубликовали статью, в которой описывали зависимый от FOXP2 ген SRPX2 , контролирующий динамику межнейронных соединений в речевом центре мозга. Стоит также заметить, что в описанных опытах с геном FOXP2 оценивалась способность мышей к обучению вообще, так что, вероятно, этот ген и у человека может иметь отношение не только к речевым способностям.

Статья на конкурс «био/мол/текст»: Речь считается уникальной чертой, свойственной только людям, но и у других видов есть свои формы коммуникации, которые основаны на механизмах, схожих с человеческими. Схожесть во многом определяется близостью их генетических основ. Герой этого рассказа - ген FOXP2 - назван «геном речи», но именно у людей он приобрел такие свойства, которые позволили нам стать теми, кто мы есть.

«Био/мол/текст»-2015

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: лаборатория биотехнологических исследований 3D Bioprinting Solutions и студия научной графики, анимации и моделирования Visual Science .

В конце 80-х годов XX века в одной из школ в западной части Лондона учителя заметили, что семеро детей, у которых были проблемы с речью, росли в одной семье. Эта семья (в научной литературе она фигурирует под названием «семейство КЕ ») имела пакистанское происхождение, и при более внимательном изучении ее членов выяснилось, что в трех поколениях этой семьи есть люди, имеющие проблемы с речью (рис. 1). У них возникали трудности с произношением слов, и иногда слова заменялись близкими по звучанию. Если бы они говорили на русском, то, например, вместо слова «печь» произносили бы «течь». В семье были обнаружены мягкие, небольшой степени выраженности, расстройства и более тяжелые формы речевых нарушений, серьезно затрудняющие общение.

Рисунок 1. Генеалогическое древо семьи KE. В трех поколениях семьи обнаруживались люди, имеющие проблемы с речью разной тяжести (закрашенные черным фигуры) . Это были представители обоих полов: мужчины (квадраты) и женщины (круги).

Учитывая, что проблемы с речью передавались из поколения в поколение, доктора, изучавшие семью KE, предположили, что в основе этих расстройств лежит какое-то генетическое нарушение. Трудности с речью возникали у представителей обоих полов, а значит, «виновный» ген находился не на половых хромосомах (X или Y), а на аутосомах . В итоге команда генетиков из Оксфорда смогла определить, что искомый ген находится на 7-й хромосоме . Также семью KE изучали лингвисты - например, Мирна Гопник (Myrna Gopnik ) из Канады. Они предположили, что речевые расстройства в семье вызваны мутацией «грамматического гена», который отвечает за синтаксически и грамматически правильное построение фраз. В дальнейшем было установлено, что представители изучаемой семьи имели проблемы не только с синтаксисом и артикуляцией, но и в целом испытывали затруднения в управлении языком и губами . Это расстройство было позднее названо вербальной диспраксией . Мозг представителей семьи KE не умел точно управлять губами и языком, вследствие чего слова не произносились правильно (см. врезку).

Как в мозге возникает речь

Для формирования нормальной речи важна слаженная работа двух участков коры головного мозга - зоны Брока в лобной коре и зоны Вернике в височной доле. Зона Брока отвечает за произношение слов, за двигательную составляющую речи. При повреждении этого участка мозга, например, при инсульте, у пациента возникает моторная афазия - невозможность произносить слова или выраженное ограничение в количестве произносимых слов. Если патологический процесс затрагивает зону Вернике, то это приводит к сенсорной афазии (афазии Вернике ) - нарушению понимания речи. Пациент с выраженной сенсорной афазией не понимает, что ему говорят другие люди: вместо слов он слышит неясный набор звуков. У представителей семьи КЕ возникли проблемы функционирования лобной коры, то есть их нарушения речи представляли собой вариант моторной афазии.

Ген, который оксфордские ученые локализовали на 7-й хромосоме, в последующем был назван FOXP2 (Forkhead box protein P2 ). Он активен в мозге, а также в легких и кишечнике. FOXP2 - это один из множества генов-регуляторов, относящихся к семейству FOX -генов. На основе гена синтезируется фактор транскрипции, который не участвует напрямую в биохимических процессах, но зато может взаимодействовать с десятками и сотнями промоторных областей других генов и регулировать их активность. Изменение этого гена приводит к тому, что все «подчиняющиеся» ему гены не будут выполнять свою работу правильно.

What does FOXP2 gene say?

Все FOX -гены регулируют нормальное развитие эмбриона, и FOXP2 - не исключение. Экспрессия этого гена повышена в клетках-предшественниках нейронов головного мозга, а при выключении FOXP2 подавляется их возникновение . Одним из способов, которым FOXP2 регулирует созревание клеток, является его контроль над активностью гена SRPX2 (sushi repeat-containing protein X-linked 2 ), кодирующего структуру белка пероксиредоксина . Через этот ген FOXP2 управляет образованием синапсов (синаптогенезом), а пониженная активность SRPX2 приводит к нарушению синаптогенеза и звукового общения у мышей .

В ходе эволюционного процесса ДНК может изменяться случайным образом, то есть в молекуле происходят мутации. Замены в последовательности нуклеотидов, при которых структура белка не изменяется, называются синонимичными . Если же замена в ДНК приводит к появлению новой аминокислоты в белке, то такая замена считается несинонимичной и, как правило, ведет к изменению функции белка. При изучении молекулярной эволюции FOXP2 вскрылись интересные обстоятельства . Этот ген - один из самых консервативных в человеческой ДНК, и наибольшие изменения в FOXP2 внутри группы приматов произошли после расхождения эволюционных линий человека и шимпанзе - наших ближайших родственников. У макак-резусов, горилл и шимпанзе происходили только синонимичные замены в ДНК, и лишь у орангутанов была одна несинонимичная замена (рис. 2). Высокая консервативность структуры гена связана с множеством функций, которые он регулирует, и их важностью для развивающегося организма. Если при мутации FOXP2 возникали такие формы кодируемого им белка, которые не выполняли необходимые функции полностью, это приводило к неправильному развитию зародыша и его гибели. Такие мутации не могли передаваться следующему поколению. Две несинонимичные замены, которые возникли у человека в гене FOXP2 , по-видимому, дали нашим предкам серьезное преимущество и закрепились в геноме Homo sapiens .

Рисунок 2. Эволюция гена FOXP2 . Цифры, указанные через черту, представляют собой количество замен (мутаций) в последовательности ДНК: до черты приведено количество несинонимичных замен, после черты - синонимичных. У человека, например, в сравнении с шимпанзе произошли всего две замены, но обе были несинонимичными, то есть привели к качественному изменению гена. В то же время у мышей произошла 131 синонимичная замена и всего одна несинонимичная.

Птичьи трели

Если у человека ген FOXP2 связан с речью, то у других животных он должен регулировать похожие функции. Первое, что приходит в голову - это пение птиц. Возможно, вам кажется, что птицы всегда поют одинаково, но это не так. Пение - один из инструментов для привлечения внимания представительниц своего вида. Пение в присутствии самок называется направленным , а когда самцы поют «для души» или с целью тренировки, то такое пение считается ненаправленным . За легкими и воздушными трелями певчих птиц стоит четкая и слаженная работа их нервной системы и машинерии генов, управляющих ее функционированием.

Модельным организмом для изучения генных основ птичьего пения является зебровая амадина (Taeniopygia guttata ) (рис. 3), а самым изученным (в отношении пения) отделом мозга птиц - область X (area X ), расположенная в полосатом теле - стриатуме . Птицы, чье пение меняется в зависимости от сезона, демонстрируют изменения области X в течение года . Она увеличивается в сезон размножения, когда птице необходимо завоевать самку, и становится меньше, когда этот период времени заканчивается. Увеличение области X у птиц напрямую связано с образованием новых синапсов для овладения новыми певческими приемами.

Рисунок 4. Экспрессия FoxP2 . При направленном (directed) пении уровень экспрессии гена выше, чем при ненаправленном (undirected) . Эта связь может указывать на то, что для более стройного пения необходима слаженная активность нервной системы, которую и обеспечивает FoxP2 .

Зебровая амадина не относится к птицам, чье пение меняется в зависимости от сезона; для нее более характерно сочетание направленного и ненаправленного пения в течение всего года. Чтобы изучить активность FoxP2 не во время развития мозга, а при разных видах его активности, ученые провели следующий опыт. Несколько самцов зебровой амадины пели «для души», в отсутствие самок и самцов своего вида, а другие самцы пели самочкам, которых постоянно меняли экспериментаторы. Также имелась контрольная группа из птиц, которые не пели. Во время эксперимента проводилась аудиозапись птичьих песен. Выяснилось, что при ненаправленном пении уровень экспрессии FoxP2 снижается, а при направленном остается высоким (рис. 4). Однако при ненаправленном пении отмечалось большее разнообразие мелодий, чем при направленном. Такую разницу можно объяснить уровнем экспрессии FoxP2 : чем интенсивнее экспрессия, тем более упорядоченными и стабильными становятся песни птицы. Стоит отметить, что ученые, проводившие исследование, не указывают причину, почему у амадин, которые не пели, уровень экспрессии FoxP2 оставался высоким .

В другом исследовании на зебровых амадинах уточнили роль FoxP2 в формировании певческих способностей . Было определено, что в области X существует две популяции нейронов. Первая популяция состоит из нейронов с высокой активностью FoxP2 , вторая - с низкой. Во время взросления птицы количество нейронов из первой популяции снижается (рис. 5), а вместе с ним снижается и разнообразие птичьих песен. Однако уровень экспрессии FoxP2 всё равно возрастает при направленном пении, что указывает на двухфазное влияние этого гена. Во время взросления нейроны, в которых активно экспрессируется FoxP2 , отвечают за окончательное формирование области X. После достижения функциональной зрелости повышение активности гена происходит во время направленного пения, требующего слаженности и четкости. Если нарушить экспрессию FoxP2 в области Х, то при обучении пению птицы воспроизводят мелодии с ошибками и не в полном объеме . При нарушении работы «гена речи» также нарушается нормальная вариабельность певческих мотивов у молодых и взрослых птиц. Это происходит за счет нарушения дофаминергической модуляции активности области X. FoxP2 участвует в формировании дофаминовых рецепторов на дендритах нейронов области X и системы передачи сигнала от них внутрь клетки, а значит, изменение его экспрессии приводит к проблемам в этой схеме . Более подробно сходство генетических механизмов формирования птичьих песен и речи человека описано в статье Елены Наймарк на «Элементах» .

Рисунок 5. Возрастные различия в количестве нейронов, принадлежащих к разным популяциям, у зебровых амадин. Популяция нейронов, активно экспрессирующих FoxP2 , по мере взросления постепенно уменьшается. Размер популяции «низкоактивных» нейронов с возрастом птицы никак не связан.

Головастый Микки Маус

Современные методы молекулярной биологии позволяют «пересаживать» гены от одного организма другому. Можно внедрить человеческий FOXP2 в генόм другого животного, чтобы понять, какие преимущества в работе головного мозга дает этот вариант гена.

Самая первая работа в этом направлении была проведена в 2009 году . Объектом исследования ученых стали мыши, в геноме которых «мышиный» вариант Foxp2 заменили «очеловеченным». Нужно уточнить, что менялся не целый ген, а лишь два нуклеотида, определяющих разницу в аминокислотных последовательностях белка FOXP2 человека и шимпанзе (белок мыши отличается еще одной аминокислотой). Все мыши с «человеческим» геном (hum ) выжили и были способны оставлять потомство. В исследовании сравнивался еще один тип мышей (wt/ko ), у которых один из аллелей гена Foxp2 принадлежал обычной мыши (wild type, wt ), а другой представлял собой вариант гена, встречающийся у людей с нарушениями речи (ko ). Также исследовались «обычные» мыши, и их результаты были приняты за условную норму, но в обсуждении не учитывались.

Рисунок 6. Уровень дофамина в мозге двух групп мышей. У hum-мышей в сравнении с wt/ko-мышами дофамина в разных структурах мозга вырабатывается меньше.

«Очеловеченные» мыши проявляли меньше исследовательской активности, чем wt/ko-мыши, но в то же время они чаще участвовали в групповых контактах. У hum-мышей в сравнении с группой wt/ko в головном мозге был ниже уровень дофамина - главного «мотивирующего» нейромедиатора (рис. 6). Между уровнем дофамина и исследовательским поведением может быть прямая связь. Сниженный уровень дофамина у hum-мышей не формирует мотивации к действию такой силы и в таком количестве, как у wt/ko-особей. Однако нельзя сказать, что это плохо. В определенном смысле hum-мыши могут быть названы менее суетливыми и более собранными по сравнению со своими wt/ko-собратьями. В стриатуме (области, богатой дофаминовыми нейронами) hum-мышей были обнаружены нейроны с более длинными дендритами - отростками, передающими информацию другим клеткам. Помимо этого, нормальный человеческий вариант Foxp2 увеличивал нейропластичность в головном мозге hum-мышей. В целом складывается впечатление, что «очеловечивание» гена упорядочило работу нервной системы hum-мышей за счет более тонкой настройки дофаминергической передачи сигнала.

Другое исследование, проведенное группой европейских ученых, анализировало различные виды обучения у мышей с человеческой версией Foxp2 . Существует два принципиально разных вида обучения - декларативное и процедурное . Декларативное обучение требует сознательного контроля над каждым действием, осознания его смысла. Процедурное обучение осуществляется за счет автоматического повторения действий. В эксперименте обычные мыши и мыши с человеческим вариантом Foxp2 должны были проходить лабиринт, пользуясь разными видами обучения. Процедурное обучение происходило в случае, когда грызунам требовалось всегда поворачивать направо, чтобы найти угощение. В другом варианте задания, задействовавшем декларативное обучение, лакомство всегда размещалось в одной и той же части лабиринта, но так как мышей запускали в него с разных сторон, то им приходилось учитывать это обстоятельство и запоминать расположение награды, опираясь на дополнительные внешние сигналы.

Когда виды обучения исследовали по отдельности, разницы между двумя группами мышей не было: обе группы справлялись с заданием примерно одинаково. Hum-мыши получали явное преимущество над обычными, если поначалу обучались в «декларативном» лабиринте, а затем переходили в «процедурный». По всей видимости, у «очеловеченных» мышей улучшается переход от декларативного обучения к процедурному. По мнению экспериментаторов, такая особенность функционирования нервной системы мышей может демонстрировать изменения в головном мозге людей, которые приспособили его к речи. Ученые, в частности, считают, что у hum-мышей баланс декларативного и процедурного обучения смещен в сторону процедурного, а у обычных мышей - наоборот. Феномен быстрого переключения с декларативного обучения на процедурное с повышением успешности последнего исследователи называют процедурализацией .

Такой эффект аминокислотных замен в Foxp2 стал возможен потому, что этот белок регулирует большое количество генов и в конечном счете управляет развитием стриатума - отдела мозга, необходимого для обучения. Человеческая версия Foxp2 у нейронов стриатума удлиняет дендриты, а также увеличивает долговременную депрессию (long-term depression - В.Л.) проведения сигнала в нейронах и нейропластичность, что тоже благотворно влияет на деятельность мозга. По-видимому, в мозге образуются более прочные связи, которые выполняют свою функцию стабильнее. Итогом этих изменений становится лучшая интеграция процессов обучения в схему поведения. Процедурализация не ускоряет «автоматизацию» навыка, иначе hum-мыши получили бы большое преимущество над обычными уже на стадии изолированной проверки разных видов обучения. Она позволяет усвоить навык и впоследствии обучиться схожим действиям в ускоренном темпе, на автоматическом уровне, то есть «протаптывает дорожку» для другой информации. В принципе, это очень похоже на обучение речи, когда ребенок, усвоив основы, начинает учиться сам, буквально на ходу, и в том числе самостоятельно конструировать слова.

Возможно, самым заметным вкладом FOXP2 в эволюционную историю нашего вида является процедурализация нашего обучения , которая упростила не только речь. Она могла привести к более эффективному созданию орудий труда, развитию способов приготовления пищи и возникновению прочих важных составляющих нашей культуры. Если дать волю фантазии, то можно представить, что современная цивилизация возникла благодаря двум аминокислотным заменам в белке FOXP2, и это довольно захватывающая мысль.

Литература

  1. Simon E. Fisher, Faraneh Vargha-Khadem, Kate E. Watkins, Anthony P. Monaco, Marcus E. Pembrey. (1998). Localisation of a gene implicated in a severe speech and language disorder . Nat Genet . 18 , 168-170;
  2. Kate E Watkins, David G. Gadian, Faraneh Vargha-Khadem. (1999). Functional and Structural Brain Abnormalities Associated with a Genetic Disorder of Speech and Language . The American Journal of Human Genetics . 65 , 1215-1221;
  3. D. Tsui, J. P. Vessey, H. Tomita, D. R. Kaplan, F. D. Miller. (2013). FoxP2 Regulates Neurogenesis during Embryonic Cortical Development . Journal of Neuroscience . 33 , 244-258;
  4. G. M. Sia, R. L. Clem, R. L. Huganir. (2013). The Human Language-Associated Gene SRPX2 Regulates Synapse Formation and Vocalization in Mice . Science . 342 , 987-991;
  5. Wolfgang Enard, Molly Przeworski, Simon E. Fisher, Cecilia S. L. Lai, Victor Wiebe, et. al.. (2002). Molecular evolution of FOXP2, a gene involved in speech and language . Nature . 418 , 869-872;
  6. F Nottebohm. (1981). A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain . Science . 214 , 1368-1370;
  7. I. Teramitsu, S. A. White. (2006). FoxP2 Regulation during Undirected Singing in Adult Songbirds . Journal of Neuroscience . 26 , 7390-7394;
  8. Thompson C.K., Schwabe F., Schoof A., Mendoza E., Gampe J., Rochefort C., Scharff C. (2013). Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches . Front. Neural Circuits. 7 , 24;
  9. Sebastian Haesler, Christelle Rochefort, Benjamin Georgi, Pawel Licznerski, Pavel Osten, Constance Scharff. (2007). Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X . PLoS Biol . 5 , e321;
  10. Malavika Murugan, Stephen Harward, Constance Scharff, Richard Mooney. (2013). Diminished FoxP2 Levels Affect Dopaminergic Modulation of Corticostriatal Signaling Important to Song Variability . Neuron . 80 , 1464-1476;
  11. Элементы: «Птичьи песни и человеческая речь организуются за счет сходных генов »;
  12. Wolfgang Enard, Sabine Gehre, Kurt Hammerschmidt, Sabine M. Hölter, Torsten Blass, et. al.. (2009). A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice . Cell . 137 , 961-971;
  13. Дофаминовые болезни ;
  14. Christiane Schreiweis, Ulrich Bornschein, Eric Burguière, Cemil Kerimoglu, Sven Schreiter, et. al.. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance . Proc Natl Acad Sci USA . 111 , 14253-14258.

Как так получилось, что мы, люди, можем говорить, а наши довольно-таки близкие родственники шимпанзе – нет? Американские специалисты провели масштабное исследование, в ходе которого попытались разобраться, что стало истинной причиной столь критического отличия. Так ли важно развитие мозга с годами или же за всё отвечают наши гены?

Вербальное общение людей между собой считается одной из основных отличительных черт человека, отделяющих его от всего остального мира животных. Пусть эта граница условна и те или иные проявления речи (равно как и осознания, восприятия произносимых и слышимых звуков) у животных всё же имеются. Но неоспоримый факт, что до уровня человека они не дотягивают.

В чём заключается уникальность Homo sapiens , решили доподлинно выяснить генетики из университетов Калифорнии в Лос-Анджелесе (UCLA) и Эмори (Emory University). Они предположили, что "виной" тому наши гены. Впрочем, учёные в этом были, конечно же, далеко не первыми, но данная группа специалистов впервые провела столь обширное исследование генетических основ появления речи у людей.

Довольно давно известно, что центральным геном, ответственным за правильное развитие речи у человека, является FOXP2 . Этот ген кодирует белок с тем же названием, благодаря которому FOXP2 может контролировать работу других генов.

Прежние исследования показали , что когда этот ген инактивирован, у людей развиваются серьёзные проблемы с речью (составлением фраз) и произношением звуков.




Однако FOXP2 присутствует и у некоторых животных (птиц, рептилий и даже рыб). По логике получается, что за появление речи у человека отвечает не он. Одни научные группы стали искать другие "гены речи", другие – продолжили детальное изучение работы FOXP2.

Дальнейшие исследования показали, что FOXP2 почти не изменялся во время эволюции млекопитающих (вплоть до времени разделения человека и шимпанзе). Однако около 200 тысяч лет назад ген начал приобретать свои "человеческие" черты.

Последнее было установлено группой немецких учёных в 2002 году. Биологи тогда обнаружили , что у шимпанзе белки, кодируемые версией этого гена, имеют некоторые отличия от человеческих. Это может означать, что у людей FOXP2 функционирует по-другому. Отсюда и уникальные лингвистические способности.

Ещё один шаг к пониманию происходящих процессов сделали в нынешнем году генетики из института эволюционной антропологии Макса Планка (Max-Planck-Institut für evolutionäre Anthropologie). Они внедрили человеческую версию гена в ДНК мыши.

Конечно, грызуны от этого не заговорили по-человечески: всё-таки способность к речи - навык комплексный. Но проведённые тогда исследования показали, что вокализация животных изменилась. Кроме того, в отделах мозга мышей (тех, что связаны с речью у людей) нейроны изменили своё строение и активность. А это уже что-то!

Более детальным исследованием занялась группа учёных под руководством Женевьевы Конопки (Genevieve Konopka) и Дэниела Гешвинда (Daniel Geschwind) из университета Калифорнии в Лос-Анджелесе. Биологи вырастили в чашках Петри колонии клеток мозга, у которых отсутствовал ген FOXP2.

Затем одной части клеток была внедрена человеческая версия гена, а второй - от шимпанзе. После этого специалисты проследили за экспрессией генов, процессом перевода информации ДНК в работающие белки клетки и зарегистрировали, на каких генах и как отразились эти изменения.

В своей статье в журнале Nature учёные пишут, что из сотен подвластных FOXP2 генов удалось вычленить 116, которые реагировали на активацию человеческой версии не так, как на ген, взятый у обезьян. "Определив состав этой группы, мы заполучили в свои руки набор инструментов, позволяющих влиять на человеческую речь на молекулярном уровне", - заявляет Конопка.

Эта подборка генов, скорее всего, тоже участвовала в эволюции речи и языка, так как многие её составляющие контролируют развитие мозга или же связаны с познавательными способностями. Часть генов определяет появление и контролирует движение тканей лица и гортани (которые, как известно, активно участвуют в артикуляции).

Предварительные исследования Гешвинда эволюции тех самых 116 генов показали, что у них была примерно одна и та же история. "Возможно, они изменялись все вместе, как бы в связке", - рассуждает учёный.

Дэниел также отмечает, что, несмотря на доказанную важность FOXP2, он не стал бы называть его "геном речи". Возможно, FOXP2 – лишь часть некой группы, или же он не является первым звеном цепи (его работой также управляет какая-то неизвестная доселе субстанция), поясняет биолог.

Гешвинд говорит об этом не просто так. Его группа провела второй эксперимент: сравнила активацию генов во взрослых тканях мозга человека и шимпанзе. Оказалось, что существует частичное совпадение в работе тех генов, активность которых отличалась в мозге людей, и тех, что по-другому контролировались человеческой версией FOXP2.



Пока рано делать какие-то выводы, но велика вероятность, что большая часть различий в мозге Homo sapiens и шимпанзе (по языковой линии) объясняется лишь двумя небольшими изменениями в одном гене. "Если это правда, было бы просто невероятно", - говорит Вольфганг Энард (Wolfgang Enard) из института эволюционной антропологии Макса Планка. (От себя добавим, что это снова подчеркнёт плавность перехода способностей от шимпанзе к человеку.)

"Эта работа – начальная точка, основа всех будущих молекулярных исследований, посвящённых изучению эволюции языка", - добавляет нейробиолог Пашко Ракич (Paško Rakić) из Йеля.

Прокомментировала нынешнюю работу и профессор Фаранех Варгха-Кхадем (Faraneh Vargha-Khadem) из университетского колледжа Лондона. Она занимается нарушениями речи пациентов, обусловленными генетическими отклонениями (и в активности FOXP2 в частности).

Профессор соглашается с выводами нынешней научной группы и отмечает, что у её больных часто встречается искривлённая форма нижней части лица (что ещё раз подтверждает: влияние FOXP2 – многогранное). Возможно, шимпанзе не могут говорить из-за тех же физических отклонений. Человек не мог бы танцевать, не будь у него ног, сравнивает Варгха-Кхадем.

Да, никто из наших братьев меньших, включая столь близких нам шимпанзе, не может общаться так же осмысленно и полноценно, но при этом лошади, к примеру, используют некое подобие слов , обезьяны вроде бы понимают грамматику и различают голоса , а сурикаты – интонации сородичей . Может, они и облекли бы свои мысли в слова, но у них нет соответствующих генетических предпосылок.

Фаранех поддерживает Дэниела и в вопросе комплексного подхода к развитию речи у людей. Не стоит концентрироваться лишь на одном гене и его многочисленных подопечных, считает она.

Кроме того, Варгха-Кхадем предполагает, что FOXP2 дал человеку лишь физическую возможность заговорить, но это не объясняет, как абстрактные идеи материализовались в древнем человеческом мозгу в слова, как появились высшие познавательные навыки. И с этим ещё предстоит разбираться.

Впрочем, и собственно с произношением учёным работать ещё очень долго. Ведь если вдуматься, "движение всех тех мускулов, что ответственны за произношение, – это тоже маленькое чудо", – говорит Варгха-Кхадем. Дабы воспроизвести последовательности звуков так, чтобы они были понятны слушателю, нужно тоже пройти очень долгий путь развития.

Каких-то особенных, невероятных преимуществ у человека пока обнаружено не было. Может, некоторые животные уже двигаются по этому пути, постепенно и незаметно догоняя людей?