Изображение листа мебиуса до его открытия. Геометрия и топология


XШ районная научно-практическая конференция учащихся

секция математики

Лист Мёбиуса

Джавадова Сабина

Школа № 41, 10 класс

г.Новокузнецк, 2009 год.

Введение

Как бы то ни было, но в 1858 году Лейпцигский профессор Август Фердинант Мёбиус, ученик знаменитого К.Ф.Гаусса, астроном и геометр, послал в Парижскую академию наук работу, включающую сведения об этом листе. Семь лет он дожидался рассмотрения своей работы, и. не дождавшись, опубликовал её результатов в 1858 году.

У листа Мёбиуса всего одна сторона, и это поразило немецких профессоров, и потому что каждая поверхность имеет две стороны.


Лист Мёбиуса

Рассказывают, что открыть свой "лист Мёбиуса" помогла служанка сшившая неправильно концы ленты.

Как бы то ни было, но в 1858 году Лейпцигский учёный Август Фердинант Мёбиус, ученик "короля математиков" К.Ф.Гаусса и многих других из тех, кому математика обязана своим развитием, послал в Парижскую академию работу, включающую сведения об этом листе. Семь лет он дожидался рассмотрения своей работы, и. не дождавшись, опубликовал её результаты.

Чем же интересен этот лист? А тем, что у листа Мёбиуса - всего одна сторона. Мы же привыкли к тому, что у всякой поверхности, с которой мы имеем дело (лист бумаги, велосипедная или волейбольная камера) − две стороны.

Лента Мёбиуса обладает любопытными свойствами. Если попробовать разрезать ленту пополам по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя(рис.1) (вдвое больше закрученная, чем лента Мёбиуса) лента, которую фокусники называют "афганская лента". Если теперь эту ленту разрезать посередине, получатся две намотанные друг на друга (рис.2). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например, если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника (рис.3). Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Чтобы сделать лист Мёбиуса надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. Находясь на поверхности листа Мёбиуса, можно было бы идти по ней вечно.

Попробуйте покрасить одну сторону листа Мёбиуса - кусок за куском, не переходя через край ленты. И что же? Вы закрасите весь лист Мёбиуса! "Если кто-нибудь попробует раскрасить "только одну" сторону поверхности ленты Мёбиуса, пусть лучше сразу погрузит её всю в ведро с краской",- пишут Рихард Курант и Герберт Роббинс в превосходной книге "Что такое математика".

Неожиданность номер три: граница у листа Мёбиуса одна, а не состоит из двух частей, как у обычного кольца.

Свойство односторонности листа Мёбиуса было использовано в технике: если у ременной передачи ремень сделать в виде листа Мёбиуса, то его поверхность изнашивается вдвое медленнее, чем у обычного кольца. Это даёт ощутимую экономию (рис. 4).

Лист Мёбиуса один из объектов в области математики под названием топология (по-другому "геометрия положения"). Удивительные свойства листа Мёбиуса- он имеет один край, одну сторону,- не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. Оказывается, свойства такого типа, несмотря на кажущуюся их непривычность, связаны как раз с наиболее абстрактными математическими дисциплинами, именно с алгеброй и теорией функций.

Если на внутреннюю сторону обычного кольца посадить паука, а на наружную- муху и разрешить им ползать как угодно, запретив лишь перелезать через края кольца, то паук не сможет добраться до мухи, не так ли? А если их обоих посадить на лист Мёбиуса, то бедная муха будет съедена, если, конечно, паук ползает быстрее!

В топологии изучаются свойства фигур и тел, которые не меняются при их непрерывных деформациях.

Эксперименты для всех. Возьмём ленту, разделим каждую её сторону на три одинаковые полоски и склеим, перекрутив один раз лист. Будем резать по пунктирной линии. Если бы лента была перекручена, то сначала мы бы отрезали одно кольцо, а потом ещё два остальных. Всего три кольца, каждое той длины, что и первоначальное, но второе меньшей ширины. Но у нас лист Мёбиуса. И, не отрывая ножниц от бумаги, разрежем пунктирными линиями сразу и получим два сцеплённых кольца(рис.5). Одно из них вдвое длиннее исходного и перекручено два раза.

Второе - лист Мёбиуса, ширина которого втрое меньше, чем у исходного.

Лист Мёбиуса- не ориентируемая поверхность (поверхность допускающая ориентацию) с краем.

Лист Мёбиуса - это также пространство нетривального расслоения над окружностью с слоем отрезок.

Лист Мёбиуса - двухмерное компактное множество (т.е. поверхность) с границей. Это стандартный пример поверхности, которая не ориентируема. Лист Мёбиуса - это также стандартный пример, используемый, чтобы проиллюстрировать математическое понятие пучок волокон.

Подобные объекты. Близким "странным" геометрическим объектом является бутылка Клейна (рис.6) - (определённая не ориентируемая поверхность). Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Искусство и технология. Лист Мёбиуса служил вдохновением для скульптур и графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных- лист Мёбиуса показывает муравьёв, ползающих по поверхности ленты Мёбиуса (рис.7).

Лист Мёбиуса также часто встречается в научной фантастике, например в рассказе "Стена Темноты". Иногда научно- фантастические рассказы предполагают, что наша вселенная может быть некоторым обобщённым листом Мёбиуса. В рассказе "лист Мёбиуса" автора А.Дж.Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда.

Существовали технические применения ленты Мёбиуса. Полоса ленточного конвейра выпонялась в виде ленты Мёбиуса, что позволяло ему работать дольше, потому что вся поверхность ленты равномерно изнашивалась. Также в системе записи на непрерывную плёнку применялись ленты Мёбиуса (чтобы удвоить время записи). Устройство под названием "резистор Мёбиуса- это недавно изобретённый электронный элемент, который не имеет собственной индуктивности.

Задачи. 1)Каждые две из пяти произвольно заданных в плоскости точек A, B, C, D, E соединены прямой. Площади возникающих при этом пяти треугольников EAB,ABC, BCD, CDE, DEAзаданы; требуется выразить через них площадь пятиугольника ABCDE. Вместо площадей этих пяти треугольников можно также считать заданными

площади пяти четырёхугольников: BCDE, CDEA, DEAB, EABC, ABCD, - и искать выражение через них площади пятиугольника ABCDE (рис.8). пятиугольника ABCDE у которого площади треугольников EAB, ABC, BCD, CDE, DEAравны соответственно a, b, c, d,eесть корень квадратичного уравнения

Не менее интересно и то, что площадь

пятиугольника ABCDE, у которого площади четырёхугольников BCDE, CDEA, DEAB, EABC, ABCD равны соответственно есть корень "такого же" квадратного уравнения

Мёбиус рассматривает не только выпуклые многоугольники, но и учитывает что порядок, в котором следуют точки A, B, Cи точки B, C, D, соответствует обходу по сторонам эти треугольников по часовой стрелке, а порядок, в котором следуют точки C, D, E- обходу по сторонам треугольника CDE против часовой стрелки. Более того, Мёбиус рассматривает не только "обычные" многоугольники, но и такие, у которых стороны могут пересекаться не только в вершинах многоугольника (рис.9).И как итог, можно сказать- если каждые две точки какой- либо системы и точек, расположенных в плоскости, соединить прямой линией, и если считать заданными площади (независимые между собой) каких-либо 2n-5 многоугольников, возникающих от пересечения этих прямых, то через них можно выразить площадь каждого из остальных многоугольников".

2)А вот и ещё одна задача,- в пятиугольнике ABCDE заданы площади p, q, r, s, t треугольников ACD, BDE, CEA, DAB, и EBC. Нужно через них выразить площадь пятиугольника ABCDE. А вот и ответ:

Заключение

В начале своей работы я ставила перед собой цель- изучить все особенности листа Мёбиуса.

Написав доклад, я убедилась в том, что Лейпцигский профессор Август Фердинант Мёбиус в 1858 году сделал масштабное открытие, за которым скрывались многие факты.

Я достигла своих целей, рассмотрев полную информацию о листе Мёбиуса.


Литература

1. Энциклопедия "Я познаю мир"

2. Внеклассные задания 8-9 класс (А.С.Громов)

3. w.w.w.Rambler.ru

4. Научно-популярный журнал "Квант" 1975год №7, 1977 №7.


Приложение

Бочин В.В. 1

Безобразова О.И. 1

1 ГБОУ АО «Православная гимназия имени священномученика Иосифа, митрополита Астраханского и благодетельницы Веры Жилкиной»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность проекта

Тема «Лента Мёбиуса» занимает важное место в изучении математики. Эта тема является важной интересной темой курса школьной математики.

Чудесные свойства этого простого, и в то же время загадочного листа бумаги в разных странах породили множество научных трудов, изобретений (и полезных, и нереальных), а также многочисленные фантастические рассказы, повести и романы.

Цели проекта

Расширение общего кругозора.

Сформировать представление о ленте Мёбиуса.

Понять, чем особенна лента Мебиуса.

Задачи исследования

Разобраться с понятием «лента Мёбиуса».

Выявить, что такое лента Мёбиуса и зачем она необходима.

Определить, чем интересна лента Мёбиуса.

Ознакомиться с тем, что означает лента Мёбиуса.

Разобраться, для чего используется лента Мебиуса.

Выявить применение ленты Мёбиуса в жизни.

Методы исследования

Анализ математической литературы, учебников и информационных сайтов по теме проекта.

Беседа с учителем математики.

Объект исследования: Лента Мёбиуса.

Гипотеза: если мы исследуем поверхность ленты Мебиуса, то определим её свойства и практическое применение.

Что такое лента Мебиуса?

Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку. Лента Мебиуса относится к ним в полной мере. Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

Лента Мебиуса, которую также называют петлей, поверхностью или листом, - это объект изучения такой математической дисциплины, как топология , исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что она имеет всего одну сторону и край никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью, где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

История создания

Существует интересная легенда об открытии листа Мёбиуса. А.Ф.Мёбиус (1790-1868) ,ученик «короля математиков» Гаусса, был профессором, руководителем астрономической лаборатории в Лейпцигском университете. Научные статьи, лекции, работа. Все как у обычного профессора университета. Рассеянного, доброго чудака студенты боготворили. Он любил ошарашивать их неожиданными задачками и назначал лекции, к примеру, на два часа ночи, чтобы показать ночное небо во всей его красе. Возможно, имя этого человека растворилось бы в истории, если бы ни одно ненастное утро…

На улице шел дождь. Была выкурена трубка, выпита чашка любимого кофе с молоком. Вид из окна навевал тоску. В кресле сидел мужчина. Мысли были разные, но как-то ничего особенного не приходило на ум. Только в воздухе витало ощущение, что именно этот день принесет славу и увековечит имя Августа Фердинанда Мебиуса.

На пороге комнаты появилась любимая жена. Правда, она была не в хорошем расположении духа. Правильнее сказать, она была разгневана, что для мирного дома Мебиусов было почти так же невероятно, как три раза в год увидеть парад планет, и категорически требовала немедленно уволить служанку, которая настолько бездарна, что даже не способна правильно сшить ленту.

Хмуро разглядывая злосчастную ленту, профессор воскликнул: “Ай да, Марта! Девочка не так уж глупа. Ведь это же односторонняя кольцевая поверхность. У ленточки нет изнанки!” Идея пришла ему в голову, когда служанка неправильно сшила ленту.

Открытая поверхность получила математическое обоснование и имя в честь описавшего ее математика и астронома.

Лента вдохновила на подвиги ни одного добряка-профессора. Взял ее на вооружение и цех парижских портных. Отныне в качестве экзамена для новичка, претендовавшего на зачисление в цех, было пришивание к подолу юбки тесьмы в форме ленты Мёбиуса.

Оценили по достоинству невольное изобретение Марты и учителя. Неугомонным нерадивым ученикам предлагалось покрасить стороны ленты Мебиуса в разные цвета. Пыхтя от усердия, школяры проводили за этим занятием немало времени.

Одновременно с Мёбиусом изобрел этот лист и другой ученик К.Ф. Гаусса - Иоганн Бенедикт Листинг (1808 - 1882), профессор Геттингенского университета. Свою работу он опубликовал на три года раньше, чем Мёбиус, - в 1862 году.

Особенности ленты Мёбиуса

Модель ленты Мебиуса может быть легко создана из полоски бумаги, повернув один из концов полоски вполоборота и соединив его с другим концом в замкнутую фигуру. Если начать рисовать карандашом линию на поверхности ленты, то линия уйдет вглубь фигуры и пройдет под начальной точкой линии, как будто уйдя на "другую сторону" ленты. Если продолжать линию, то она вернется в начальную точку. При этом длина нарисованной линии будет вдвое больше длины полоски бумаги. Этот пример показывает, что у ленты Мебиуса лишь одна сторона и одна граница . Если продолжить эксперимент и разрезать ленту Мебиуса точно посередине, то, ожидая получить в результате две ленты, мы с удивлением обнаружим еще одну такую ленту, разрезав которую так же еще раз, получим две намотанные друг на друга ленты. Не останавливаясь на достигнутом, попробуем (предварительно склеив новую ленту Мебиуса) разрезать бумажную полосу, отступив от края треть ее ширины. У нас в руках останутся два «спаянных» колечка, одно из которых (тонкое) — классическая лента Мебиуса, а широкая — «афганская» (т.е. одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую называют «афганская лента ). Одним словом, чем больше полуоборотов в ленте Мебиуса, тем более причудливые и затейливые фигуры получатся в результате.

Лента Мёбиуса - это кольцо, которое в каждой точке имеет соответственно по две составляющие протяжённость грани. Парадокс - это ситуация (высказывание, утверждение, суждение или вывод), которая может существовать в реальности, но не имеет логического объяснения.

Истину или ложь утверждает человек, который говорит «я лгу», и больше ничего не говорит?

Критянин Эпименид сказал:

«Все критяне лжецы».

Эпименид сам критянин.

Следовательно, он лжец. Если Эпименид лгун, тогда его заявление, что все критяне лгуны - ложно. Значит, критяне не лгуны.

Между тем Эпименид, как определено условием, - критянин, следовательно, он не лгун, и поэтому его утверждение «все критяне лгуны» - истинно.

Таким образом, мы пришли к взаимоисключающим предложениям.

Одно из них утверждает, что высказывание «все критяне лгуны», является ложным, а другое, наоборот, на то, что высказывание истинное.

Притом как в одном, так и в другом случае наши рассуждения логически строги, в них нет ни намеренных, ни непреднамеренных ошибок. Так, где же истина?

Было приложено немало усилий объяснить этот странный результат.

Имеется, например, такое решение.

Точно так же тот, кто считается правдивым, разве всегда утверждает лишь правду?

В практике общения ложное обычно перемешано с истиной, и мы не найдем такого отпетого лгуна, который только бы лгал. Его легко изобличить, и тогда понимай все, что им сказано, наоборот.

В действительности, однако, положение гораздо сложнее. Парадоксу посвящена обширная литература. Он на самом деле вызывает недоумение. Легенда утверждает даже, что древнегреческий философ Кронос, испытав неудачу в попытках решить этот парадокс, от огорчения умер. С тех пор внимание к парадоксу лжеца не затухало.

Свойства ленты Мёбиуса

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

Наличие одной стороны.

Односторонность - топологическое свойство листа характерное только для него. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю - другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

Непрерывность

Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

Связность

Разрезая яблоко, мы получим две части. А можем ли мы одним действием разделить кольцо на две части? Нет, для этого мы должны сделать два разреза. Поэтому любой тополог скажет, что квадрат-односвязен , кольцо и оправа от очков - двусвязны, а всяческие решётки, диски с отверстиями и подобные сложные фигуры - многосвязны. Ну, а лента Мёбиуса? Конечно двусвязена, т.к. если разрезать ее вдоль, она превратится не в два отдельных кольца, а в одну целую ленту. Причём она будет больше и тоньше исходной. Если перекрутить ленту на два оборота, то лента становится односвязным. Три оборота - связность снова равна двум.

Связность заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

Ориентированность

В ней отсутствует такое важное свойство, как ориентированность. Полный обход вокруг листа изменяет направление окружности на противоположное. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

Если на внутреннею сторону обычного кольца посадить бумажного паука, а на внешнюю - бумажную муху и разрешить и разрешить им ползать как угодно, запретив только перелазить через край кольца, то паук не сможет добраться до мухи. Если тоже самое проделать на ленте Мебиуса, то паук быстро догонит муху.

«Хроматический номер» - максимальное число областей, которые можно нарисовать на поверхности так, чтобы каждая из них имела общую со всеми другими. Хроматический номер ленты Мёбиуса равен 6. А хроматический номер простого кольца из бумаги равен 5.

Чудесные свойства этого простого и загадочного листа бумаги в разных странах породили множество научных трудов, изобретений, а также многочисленные фантастические рассказы, повести и романы.

Изготовление ленты Мебиуса

Модель ленты Мебиуса очень легко сделать, для этого нам нужны лишь ножницы, клей и бумага. Вырезаем из бумаги длинную полоску, после этого склеиваем концы этой полоски, предварительно перевернув её.

Лента Мебиуса - это бумажная лента, повернутая одним кольцом на пол - оборота и склеенная с его другим кольцом.

Применение ленты Мебиуса

В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла изобрел резистор Мебиуса, состоящий из двух скрученных на 180 градусов проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех. На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них - это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

В 1923 году знаменитый американский изобретатель Ли де Форест, предложил записывать звук на киноленте без перемены катушек, сразу «с двух сторон». Изобрели магнитофон — и сразу же нашлись сообразительные люди, которые придумали особые кассеты, где магнитная лента соединяется в кольцо и перекручивается. Ясно, что тогда можно записывать и считывать подряд с двух дорожек, не снимая кассеты с магнитофона и не меняя их местами, а значит, время непрерывного звучания увеличивается ровно вдвое.

В 1969 году советский изобретатель А. Губайдуллин предложил натянуть сделанную из специального материала ленту Мебиуса на два вращающихся ролика и покрыть ее крупинками твердого абразива. Понятно, что такая лента служит вдвое больше обычной ленты.

Некто Джакобс поставил свои знания топологии на службу в химчистки — он придумал самоочищающийся фильтр, который представляет собой все ту же ленту Мебиуса и беспрерывно освобождается от впитанной грязи, «работая» при этом обеими своими сторонами. А Ричард Дэвис, физик из американской корпорации «Сандиа» в Альбукерке, изобрел электрическое сопротивление, обладающее нулевой реактивностью.

В 1971 году изобретатель с Урала Чесноков П.Н. применил фильтр в виде листа Мёбиуса.

И это только малая часть примеров использования этой удивительной поверхности.

В генетике есть гипотеза, что спираль ДНК сама по себе тоже является фрагментом ленты Мебиуса и только поэтому генетический код так сложен для расшифровки и восприятия. Более того, такая структура вполне логично объясняет причину наступления биологической смерти - спираль замыкается сама на себя и происходит самоуничтожение.

Физики утверждают также, что все оптические законы основаны на свойствах ленты Мебиуса, в частности отражение в зеркале - это своеобразный перенос во времени, краткосрочный, длящийся сотые доли секунды, ведь мы видим перед собой зеркального своего двойника!

Российский математик Евгений Старостин и его коллега Герт ван дер Хейден из Университетского Колледжа в Лондоне в 2007 г. решили загадку, которая озадачила математиков в течение более чем 75 лет. Они поняли, как можно предсказать трехмерную форму фигуры, которую образовывает полоса Мёбиуса.

Полоса сделана так, что математики называют её «развёртывающеёся поверхностью». Это значит, что она может быть сплющена, при этом её форма не разрушится (в отличие от сферы - полоса образующая её непременно сломается при сплющивании). Если полоса формирует петлю Мёбиуса, то при разъединении концов она может вернуться в первоначальное состояние, подобно эластической резинке затрачивая на это минимум энергии.

Для решения поставленной задачи, учёным потребовались математические формулы, выведенные более двадцати лет назад. Старостин в интервью сказал следующее: «Если вы попробуете выписать уравнения, необходимые для понимания формы полосы Мёбиуса, без этих старых математических инструментов, то вы застрянете - это крайне сложно, я пробовал, и у меня не получилось».

Используя старые уравнения, два исследователя показали, что форма ленты Мёбиуса зависит от длины и ширины прямоугольника, образующего петлю.

Ученые, специализирующиеся в биологии, медицине, физике, астрономии и других областях, могли бы использовать модель. «Уравнения применимы к любой прямоугольной полосе, которая скручивается и сгибается», - говорит Джон Маддокс, математик в швейцарском Технологическом институте в Лозанне.

Они могли бы быть полезны при проектировании углеродных нанотрубок. Тот же самый подход мог бы применяться при изучении биологических молекул, помочь в создании сложных лекарств.

В астрономии ученые высказывают предположения о том, как выглядит наша вселенная. Одно из них о том, что наша Вселенная - это перекрученное пространство.

Лента Мебиуса в искусстве

Лента Мёбиуса понравилась не только математикам, но и фокусникам. Более 100 лет лист Мёбиуса используется для показа различных фокусов и развлечений. Удивительные свойства листа демонстрировались даже в цирке, где подвешивались яркие ленты, склеенные в виде листов Мёбиуса. Фокусник горящим концом лучины дотрагивался до средней линии каждой ленты, которая была выполнена из калийной селитры. Огненная дорожка превращала первую ленту в более длинную, а вторую - в две ленты, продетая одна в другую. (В этом случае фокусник разрезал лист Мёбиуса не посередине, а на расстоянии в одну треть его ширины).

У входа в Музей истории и техники в Вашингтоне стоит памятник ленте Мебиуса - на пьедестале медленно вращается стальная лента, закрученная на полвитка.

Целую серию скульптур в виде листа Мебиуса создал скульптор Макс Билл. Довольно много разнообразных рисунков оставил Мауриц Эшер. Особенно интересна гравюра с изображением муравья, ползающего по Ленте Мебиуса. В 2009 году Лиза Рэй написала картину «Корабль дураков в бесконечности».

Немало памятников посвящено ленте Мёбиуса: памятник во Франкфурте-на-Майне (Германия), памятник в Минске (Беларусь), памятник в Москве около кинотеатра «Горизонт», скульптура, украшающая окрестности здания центра физических исследований в американском штате Иллинойс.

Поражает своим решением и красотой проект новой библиотеки в виде листа Мёбиуса в Астане (Казахстан).

О ленте Мебиуса упоминают также и в поэзии:

«Лист Мебиуса - символ математики,

Что служит высшей мудрости венцом…

Он полон неосознанной романтики:

В нем бесконечность свернута кольцом».

(«Лист Мёбиуса» Наталья Юрьевна Иванова)

В 1967 году в Бразилии на международном математическом конгрессе выпустили памятную марку достоинством в 5 сентаво с изображением ленты Мебиуса.

Заключение

Во время этого исследования мне удалось прийти к следующим выводам:

1. Лента Мёбиуса имеет один край.

2. Лента Мёбиуса имеет одну сторону.

3. Лента Мёбиуса - топологический объект, не меняет своих свойств, пока её не разрезают и не склеивают её отдельные куски.

4. Поверхность лента Мёбиуса неориентируемая. На ленте Мебиуса нельзя разделить направления «по часовой стрелке» и «против часовой стрелки».

5. Лента Мебиуса получается из прямоугольника, у которого длина намного больше ширины.

Позже математики открыли еще целый ряд односторонних поверхностей. Но эта - самая первая, положившая начало целому направлению в геометрии - топологии.

В ходе исследования узнал, что:

 Существует односторонняя поверхность - лист Мёбиуса.

 Он обладает удивительными свойствами.

 Лента Мёбиуса используется в жизни.

 Она интересует литераторов и художников.

 Зная свойства Ленты Мёбиуса, можно придумать различные фокусы и развлечения и изготовить интересные вещи.

Список литературы

https://masterok.livejournal.com/3761488.html

http://vestnik-nou1.narod.ru/primenenie_lista_mebiusa.htm

http://www.decoder.ru/list/all/topic_97/

Клиффорд Пиковер «Великая математика» М. «БИНОМ Лаборатория знаний», 2015

Фоменко А. Т., Фукс Д. Б. «Курс гомотопической топологии». — М.: Наука, 1989.

А знаете ли вы, какую информацию можно получить о продукте, исходя только из его упаковки? Даже если на ней все написано с помощью иероглифов. Ничего страшного, если вы не знаете значения ни одного из них. Все равно вы поймете рисунки-пиктограммы. Они там для того и нарисованы, чтобы информацию могли считать и понять во всех уголках земного шара.

Так, если вы видите на коробке рюмку, то это означает, что внутри находится хрупкий товар, а если на пиктограмме бушует пламя, то содержимое коробки огнеопасно.

А что означают вот такие знаки?

На этой пиктограмме нарисована знаменитая лента или петля Мебиуса. Она представляет собой некий так как является односторонней поверхностью. Да, да - у нее только одна сторона. Вы можете сами в этом убедиться, если возьмете ее в руки. Сделается петля Мебиуса просто - возьмите полосу бумаги, длиной около 30 см, а шириной в 1,5 см.

Поверните один ее конец на 180 градусов и приклейте к другому. Для того чтобы убедиться в том, что у нее действительно одна сторона, поставьте ровно посредине ленты карандаш и ведите линию, не отрывая его от бумаги. Через некоторое время вы упретесь в начало вашей же линии. Бумагу вы не переворачивали, карандаш от нее не отрывали, а линия соединилась, следовательно, петля Мебиуса действительно имеет всего одну сторону, и ваши глаза вас просто обманывают. Вообще, исследовать ее очень интересно. Попробуйте разрезать ее по карандашной линии - получатся соединенные между собой кольца.

Но этот экскурс в дебри математических парадоксов вовсе не объясняет того, что же делает на упаковке петля Мебиуса. Знак этот означает, что сама упаковка сделана из материала, который может быть вторично переработан. Если внутри пиктограммы стоят цифры от 1 до 7, то они означают наименование материала, из которого изготовлена упаковка. По порядку возрастания цифр они означают: полиэтилентерфталат, полиэтилен высокой плотности, ПВХ, полипропилен, полистирол или другой пластик. Иногда вместо букв могут применяться заглавные которые обозначают то же самое.

Может случиться и так, что вместо букв или просто цифр от 1 до 7 внутри петли, или под ней будет указана какая-то величина в процентах. В этом случае петля Мебиуса рассказывает о том, сколько уже в этой упаковке содержится переработанного сырья. Почему же выбран именно этот рисунок? Это легко объяснимо. Стрелочки означают, что цикл изготовления и переработки переходит сам в себя, то есть он замкнутый.

Вообще-то простановка этого знака не регламентируется никакими законодательными требованиями и ставится исключительно по желанию производителя. Но в свете того, что за экологию сейчас борются ускоренными темпами, практически все используемые в промышленности упаковочные материалы подвергаются вторичной переработке. Так что не удивляйтесь, если встретится вам петля Мебиуса на упаковке компании "Тетра-пак" или на пластиковой бутылке. Их действительно уже научились перерабатывать, несмотря на то что раньше они считались непригодными ко вторичному использованию.

План


Введение

  1. Историческая справка
  2. Топология, как часть геометрии
  3. Лента Мёбиуса, её свойства

Заключение

Список использованной литературы


Введение


В своем реферате я постараюсь решить следующие задачи:

Изучить историю возникновения листа Мёбиуса, обычно называемого лентой Мёбиуса, её свойства.

Проведу разнообразные эксперименты с лентой Мёбиуса.

Покажу геометрическое применение ленты Мёбиуса.

Выясню, нашла ли лента Мёбиуса практическое применение в повседневной жизни.

Задача изучения различных свойств и нестандартных применений в наше время является довольно актуальной. Существует гипотеза, что наша Вселенная замкнута в эту самую ленту. Согласно теории относительности - чем больше масса, тем больше кривизна пространства. Более того, эта теория согласуется с предположением, что космический корабль, все время летающий прямо, может вернуться к месту старта, что подтверждает неограниченность и конечность Вселенной. Из этого можно сделать вывод о реальности теории зеркальных миров - ведь если астронавты совершат путешествие по ленте Мёбиуса и вернутся в исходную точку, то они превратятся в своих зеркальных двойников.

Кроме того, есть гипотеза, что спираль ДНК тоже является сама по себе фрагментом ленты Мёбиуса, и только поэтому генетический код так сложен для расшифровки и восприятия. Такой подход к структуре ДНК вполне логично объясняет причину наступления биологической смерти - спираль замыкается сама на себя и происходит самоуничтожение. Или аннигиляция, как подтверждают физики. Они также утверждают, что на свойствах ленты Мёбиуса основаны все оптические законы. В частности, отражение в зеркале - это своеобразный перенос во времени, краткосрочный, длящийся сотые доли секунды, ведь мы видим перед собой зеркального своего двойника.

В процессе работы над рефератом я использовал «Математические чудеса и тайны» М. Гарднера (стр. 43-48), «Курс наглядной геометрии» Е.С. Смирновой, 6 класс (стр. 63-67), «Современный словарь иностранных слов» (стр. 146, 468, 579, 612), «Наглядную геометрию» И.Ф. Шарыгина и Л.Н. Еранжиевой, 5-6 класс (стр. 69-72), «Энциклопедию для детей. Математика» (стр. 111-112), ресурсы Интернета.


1. Историческая справка


Таинственный и знаменитый лист Мёбиуса придумал в 1858 году немецкий геометр и астроном, профессор Лейпцигского университета Август Фердинанд Мёбиус (1790-1868 гг.), ученик «короля математиков» Гаусса.

Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет ему удалось сделать поразительное открытие. Это открытие односторонних поверхностей, одна из которых - лист или лента Мёбиуса. В научных источниках говорится, что Мёбиус взял однажды бумажную ленту, повернул один её конец на пол-оборота (то есть на 180о), а потом склеил его с другим концом. То ли от скуки он это сделал, то ли научного интереса ради - теперь уже неизвестно. По одной из версий, открыть ленту Мёбиуса помогла служанка, сшившая неправильно концы ленты банта. Относится она к числу так называемых «математических неожиданностей». Работу, включающую сведения о ленте, Мёбиус отправил в Парижскую академию наук в 1858 году. Семь лет он дожидался рассмотрения своей работы, и, не дождавшись, опубликовал её результаты.


2. Топология, как часть геометрии


Геометрия - как известно, слово греческое, в переводе на русский язык означает землемерие, изучает свойства фигур. Как и любая наука, геометрия делится на разделы:

1. Планиметрия (от латинского планум - поверхность, плоскость) - раздел геометрии, изучающий свойства плоских фигур (треугольник, квадрат, круг, окружность и т.д.).

Стереометрия (от греческого стереос - пространство) - раздел геометрии, изучающий свойства пространственных (объёмных) фигур (шар, куб, параллелепипед и т.д.).

Топология (от греческого топос - место, местность) является одним из самых «молодых» разделов современной геометрии, в котором изучаются свойства таких фигур, которые не изменяются при деформациях (растяжение, сжатие), не допускающих разрывов и склеивания. Родоначальниками топологии были немецкий учёный Георг Кантор (1845 - 1918 гг.), Павел Сергеевич Александров (1896 - 1982 гг.).

С точки зрения топологии баранка и кружка одно и тоже. Сжимая и растягивая кусок резины можно перейти от одной из этих фигур к другой. А вот баранка и шар - уже будут разными объектами: чтобы сделать отверстие, надо разорвать баранку.

Среди букв русского алфавита есть топологически одинаковые фигуры

А-Д, Г-С, С-П, 3-Э, Т-У.

Лента Мёбиуса - тоже топологический объект. Это - простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R³. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.


3. Лента Мёбиуса, её свойства


Как сделать ленту Мёбиуса?


Возьмём прямоугольную бумажную полоску, перекрутим на пол-оборота один её конец и приклеим его к другому концу той же полоски. Эту модель и называют: «лента Мёбиуса». Обладает она интересными свойствами. Для того, чтобы узнать о них, мною проведены несколько экспериментов, в которых постарался ответить на вопросы:

Если начать закрашивать ленту Мёбиуса с одной стороны, не переходя через край, то какая часть ленты окажется закрашенной?

Что получится, если разрезать ленту Мёбиуса вдоль посередине?

Что получится, если разрезать ленту Мёбиуса вдоль, отступив треть от края?

Что получится, если перекрутить ленту дважды, а потом разрезать вдоль посередине?

И вот что у меня получилось:

У ленты Мёбиуса всего одна сторона. Убедимся в этом: возьмём кисть и краску, начнём постепенно окрашивать ленту в какой-нибудь цвет, начиная с любого места. После окончания лента у нас полностью окрашена. В книге «Что такое математика?» Рихард Курант и Герберт Роббинс писали: «Если кто-нибудь вздумает раскрасить «только одну» строну поверхности мёбиусовой ленты, пусть лучше сразу погрузит ее в ведро с краской».

Попробуем разрезать обычную цилиндрическую поверхность и лист Мёбиуса по средней линии

«Обычное» (цилиндрическое) кольцо распалось на два куска, а лента Мёбиуса превратится в одно перекрученное кольцо, причём оно перекручено дважды и вдвое длиннее, но уже. Еще удивительнее то, что полученное кольцо уже двустороннее.

Если разреза?ть ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна - более тонкая лента Мёбиуса, другая - длинная лента с двумя полуоборотами (такую ленту называют афганской).

При повороте на 360 градусов получим двустороннюю поверхность. Для закрашивания её непременно нужно перевернуть на другую сторону. При разрезании вдоль посередине получим два кольца, сцепленных между собой.

Интересны были и другие эксперименты с этим удивительным геометрическим явлением.

Приготовим лист Мёбиуса из достаточно широкой полоски и разрежем его так, чтобы линия разреза все время шла вдвое ближе к левому краю полоски, чем к правому (линия разреза обойдет лист Мёбиуса дважды).

Получаем два кольца: одно - лист Мёбиуса, другое - перекрученное на 360 градусов.

Вновь возьмём бумажную полоску; один ее конец перекрутим на полный оборот (на 360 градусов), приклеим к другому концу и разрежем получившуюся модель по средней линии. Получаем два одинаковых, сцепленных кольца, каждое из которых повёрнуто на 360 градусов.

Попробуем проделать в полоске щель и проденем сквозь неё один конец полоски. Склеим как на рисунке и разрежем.

Получили две отдельных ленты Мёбиуса.

А теперь попробуем склеить обычное кольцо и ленту Мёбиуса под прямым углом и разрежем по пунктирной линии.

Каков результат? Получилась квадратная рамка!

Можно говорить о следующих свойствах ленты Мёбиуса:

Односторонность - топологическое свойство ленты Мёбиуса, характерное только для неё.

Непрерывность - с топологической точки зрения круг неотличим от квадрата, потому что их легко преобразовать один в другой, не нарушая непрерывность. На листе Мёбиуса любая точка может быть соединена с другой точкой. Разрывов нет - непрерывность полная.

Связность - чтобы разделить квадрат на две части, нам потребуется только один разрез. Но вот чтобы располовинить кольцо, потребуется уже два разреза. Что касается листа Мёбиуса, то количество связей меняется в зависимости от смены количества оборотов ленты: если один оборот - двусвязен и т.д.

Ориентированность - свойство, отсутствующее у листа Мёбиуса. Так, если бы человек смог пропутешествовать по всем изгибам листа Мёбиуса, то когда он вернулся бы в исходную точку, он превратился бы в своё зеркальное отражение.

Таким образом, лента Мёбиуса - простейшая односторонняя поверхность с краем. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края.

Ленту Мёбиуса иногда называют прародителем символа бесконечности?, так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Правда, это не соответствует действительности, ведь символ? использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса.

Другое похожее множество - вещественная проективная плоскость. Если проколоть отверстие в вещественной проективной плоскости, тогда то, что останется, будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы ее граница стала обычным кругом. Такую фигуру называют «пересечённая крышка». Пересечённая крышка может также означать ту же фигуру с приклеенным диском, то есть погружение проективной плоскости в трехмерное пространство R3.


4. Применение ленты Мёбиуса в геометрии


Полоска для создания ленты Мёбиуса должна быть узкой и длинной, с возможно большим отношением длины к ширине. Скажем, из квадратного листа ленты Мёбиуса не сделаешь.

Это верно, но с одной оговоркой, которую легко недооценить: ограничения на размер имеют значение лишь в том случае, когда бумагу запрещается «мять». Если же мять бумагу не запрещается, то ленту Мёбиуса можно склеить не только из квадрата, но из прямоугольника любых размеров - склеиваемые стороны могут быть во сколько угодно раз длиннее несклеиваемых. Сделать это можно так (рис. 1-3). Сложим прямоугольный лист в гармошку, перегнув его чётное число раз. Затем из этой гармошки, как из толстой бумажной полоски, склеим ленту Мёбиуса, вставляя соответствующие части гармошки друг в друга. На рисунке видно, что лист бумаги, из которого склеена лента Мёбиуса, оказался смятым.

Допустим, что бумажную полоску можно изгибать, но не мять. Примем ширину полоски за единицу. Ясно, что чем длиннее полоска, тем легче склеить из неё ленту Мёбиуса. Таким образом, существует такое число ?, что из полоски длины больше ? ленту Мёбиуса склеить можно, а из полоски длины меньше ? - нельзя, Что будет для полоски, длина которой в точности равна ?,нас не интересует. Очень хотелось бы найти это ?.

Удивительно, но решение этой задачи до сих пор не известно.

Развертывающаяся поверхность

Легко понять, что запрещение мять бумагу значительно ограничивает возможность манипулировать бумажным листом. Например, лист бумаги, не помяв, можно свернуть в трубку или сложить «без складки» пополам, но нельзя сложить вчетверо. Из листа бумаги, не смяв его, можно сделать конус («фунтик»), но нельзя сделать сферу или даже её кусочек: попробуйте прижать лист бумаги к глобусу, и обязательно появятся складки. Как видно, листу бумаги можно придать далеко не всякую форму. Поверхности, которые можно сделать из листа бумаги, изгибая, но не сминая его, математики называют развёртывающимися. Примеры развёртывающихся поверхностей показаны на рис. 4. Конечно, в математике развёртывающиеся поверхности определяются не так: в математическом языке отсутствуют слова «бумага», «сминать», «сделать».


топологический неориентируемый трехмерный мёбиус

Раз требование не мять бумагу так важно, посмотрим, каков его математический смысл.

Через каждую точку A развёртывающейся поверхности, не лежащую на её границе, проходит лежащий на поверхности отрезок, не кончающийся в A. Иначе говоря, в каждой точке к развёртывающейся поверхности (изогнутому, но не смятому листу бумаги) можно приложить спицу так, чтобы она прилегала к поверхности на некотором протяжении по обе стороны от взятой точки. Такой отрезок называется образующей поверхностью. Условимся, что это название относится только к отрезкам максимальной длины, целиком лежащим на поверхности, то есть, к отрезкам, не содержащимся в бóльших отрезках с этим свойством.

Если через точку А, не лежащую на границе поверхности, проходят две различные образующие, причём А не является концом ни одной из них, то достаточно маленький кусок поверхности, окружающий А, является плоским. В таком случае точку А мы будем называть плоской.

Если точка А, не лежащая на границе поверхности, является концом какой-нибудь образующей, скажем а, то окрестность точки А устроена так. Через точку А проходит единственная не кончающаяся в ней образующая, скажем, в (рис. 5). Эта образующая разделяет поверхность на две части. С той стороны от образующей в, с которой находится образующая а, к образующей в прилегает плоский кусок, с другой стороны от в, сколь угодно близко от точки А, имеются не плоские точки. Точку А в этой ситуации мы будем называть полуплоской.

Подчеркнём, что если точка поверхности не является ни граничной, ни плоской, то через неё проходит единственная не кончающаяся в ней образующая, причём концы этой образующей лежат на границе поверхности.

Лист бумаги, свёрнутый в трубочку или в фунтик, плоских и полуплоских точек не имеет. У трубочки образующие составляют семейство параллельных отрезков, у фунтика - семейство отрезков, веером расходящихся из одной точки. Возможны более сложные расположения образующих. Например, образующие и плоские точки развертывающейся поверхности, изображённой на рисунке 6а, показаны на рисунке 6б (на нём поверхность развёрнута в плоский лист бумаги): тонкие синие линии - образующие, а закрашенные области состоят из плоских точек.

Точки, лежащие на границе области плоских точек, являются либо граничными для всей поверхности, либо полуплоскими. Если поверхность сделана из бумажного многоугольника (скажем, из прямоугольника), то плоские точки составляют один или несколько плоских многоугольников, причём у каждого из этих многоугольников вершины лежат на границе поверхности, а стороны либо лежат на границе, либо состоят из полуплоских точек (см. ещё раз рисунок 6б).

Но вернёмся к вычислению ? - нижней грани длин бумажных полосок ширины 1, из которых можно склеить несмятую ленту Мёбиуса.

Теорема 1: ? ? ? /2

Доказательство. Пусть лента Мёбиуса сделана из бумажной полоски длины l. Намотаем на неё длинную бумажную ленту. Эта лента (толщиной бумаги пренебрегаем) будет составлена из прямоугольников одинаковой длины, каждый из которых принимает форму нашей ленты Мёбиуса. Отметим на длинной ленте прямолинейные образующие и плоские точки (как на рисунке 6б). Получится что-то вроде рисунка 7.

Картина периодична: всё повторяется с периодом, равным 2.Можно сказать больше: при сдвиге влево или вправо на l картинка меняется, но строго определённым образом - она переворачивается (т.е. зеркально отражается в средней линии полоски). Области плоских точек представляют собой четырёхугольники (которые могут выродиться в треугольники), ограниченные двумя отрезками противоположных краёв ленты и двумя отрезками, проходящими по ленте. Части ленты, не попавшие в эти области, вымощены образующими, концы которых лежат на краях ленты. Всё это следует из свойств развёртывающихся поверхностей. Плоские участки также можно вымостить образующими, так что вся лента будет покрыта непрерывным семейством образующих (рис. 8). Образующие в одинаковых четырёхугольниках можно выбирать одинаковым образом, так что описанная выше периодичность сохранится.

Возьмём любую образующую из нашего семейства, скажем, [АВ]. Если симметрично отразить её в средней линии полоски и затем перенести в любую сторону (скажем, вправо) на l,то получится отрезок CD, который тоже является образующей из нашего семейства (рис. 9). Заметим (это важно), что |АС| + |BD| = 2 l. При наматывании нашей длинной ленты на ленту Мёбиуса образующие [АВ] и займут одинаковое положение. Причём точка А совместится с D, а точка В - с С; другими словами, отрезки АВ и CD составят в пространстве угол в 180°. Между [АВ] и располагается непрерывное семейство образующих. При движении от [АВ] к величина угла, который эти образующие составляют в пространстве с [АВ], непрерывно изменяется от 0° до 180°.

Возьмём любое n и найдём между [АВ] и такие образующие [А1В1],….,[Аn-1Вn-1], что величина угла между [АВ] и равна к. 180°/n. Точки А1, …, Аn-1 в этом порядке лежат между А и С, а точки В1, …, Вn-1 - между В и D (см. рис. 10). Длина каждой из образующих больше или равна 1, а величина угла между пространственными положениями двух соседних образующих не меньше 180°/n.

Покажем, что каждая из сумм [АА1] + [ВВ1], [А1А2] + [В1В2], [Аn-1С] + не меньше длины а2n стороны правильного 2n-угольника, вписанного в окружность радиуса 1. Это видно на рисунке 11. На этом рисунке отрезки АкЕ и Ак+1Вк+1 равны по длине, параллельны и направлены в одну сторону, = [АкН] = 1 и || [ЕВк] (рис. 11 сделан в предположении, что [Ак+1Вк+1] < ; изменения, необходимые в случаях [Ак+1Вк+1] = и [Ак+1Вк+1] > , очевидны). Мы видим, что + = + ? ? ? ? a2n (здесь |, , - длины изображённых на рисунке 11 криволинейных отрезков; эти длины совпадают с длинами отрезков , рисунка 10. Предпоследнее неравенство следует из того, что DFHG > 90°, а последнее - из того, что DFAkH ? 180°/n).

Итак, 21 = [АС] + = ([АА1] + [ВВ1]) + ([А1А2] + [В1В2]) + ... + ([Аn-1С] + ) ? na2n, т.е. 2l при любом n не меньше половины периметра правильного 2n-угольника, вписанного в окружность радиуса 1. Значит,2l не меньше половины длины самой этой окружности, то есть ?, и l ? ?/2. Теорема доказана.

Теорема 2: ? ? ?3

Для её доказательства достаточно объяснить, как склеить ленту Мёбиуса из полоски, длина которой больше?3. Предположим сначала, что её длина в точности равна?3. Тогда на этой полоске можно расположить два правильных треугольника (рис. 12). Перегнём полоску по боковым сторонам этих треугольников, чередуя направления сгиба (рис. 13). Края АВ и CD полоски совместятся, причём точка А совместится с точкой D, а точка В - с точкой С. Получится лента Мёбиуса.

При этом построении было нарушено главное правило - не мять бумагу. Но легко понять, что если длина полоски хоть немного больше?3, то излом по образующей можно заменить изгибанием, производимым на узком участке (рис. 14).

Короче говоря, излом вдоль прямолинейного отрезка нам не страшен: его можно заменить близким к нему изгибанием. Непоправимое сминание бумаги происходит, когда две линии перегиба пересекаются, т.е. когда лист складывается наподобие носового платка. Как выглядит получившаяся лента Мёбиуса, показано на рисунке 15.

Её устройство можно представить себе так: три одинаковых правильных треугольника ABC, А"В"С", А"В"С" лежат параллельно друг другу, соответствующие вершины над соответствующими вершинами; стороны АВ и А"В", В"С" и В"С", С"А" и СА соединены перемычками. Линия склейки проходит по медиане одного из треугольников.

Теорема 3. Ленту Мёбиуса с самопересечениями можно склеить из полоски любой длины, большей ? /2.

Делается это так. Возьмём достаточно большое нечётное n и построим правильный n-угольник, вписанный в окружность диаметра 1.

Далее рассмотрим n содержащих центр окружности треугольников, каждый из которых ограничен стороной и двумя диагоналями n-угольника (рис. 16; здесь n=7). Эти треугольники покрывают наш n-угольник, некоторые его места - по нескольку раз. Приложим теперь эти n треугольников друг к другу так, как показано на рисунке 17. После этого отрежем по длинной медиане половину самого левого треугольника и приложим её к самому правому треугольнику. Получится прямоугольная полоска с отношением длины к ширине, большим ?/2, и стремящимся к ?/2 при n, стремящимся к? (ширина полоски стремится к 1, а длина - к ?/2).

Если последовательно перегнуть эту полоску по всем проведённым на ней линиям, чередуя направления сгиба (рис. 18), то треугольники расположатся как на рисунке 16. Отрезки АВ и CD при этом почти совместятся - между ними окажется только несколько слоев сложенной бумаги. При этом точка А совместится с D, а точка В - с С, так что если бы мы смогли «пропустить ленту сквозь себя» и склеить отрезки АВ с CD, то получилась бы лента Мёбиуса. Если ленту взять чуть более длинной, можно избежать складок, подобно тому как мы это сделали в доказательстве теоремы 2. Что получится, изображено на рисунке 19.

Заключение


В реферате была проделана работа по доказательству некоторых свойств ленты Мебиуса. Изучались свойства ленты на наглядных примерах. Также, в реферате доказаны некоторые теоремы. Они могут быть полезны для тех, кто начинает изучать топологию.

Лента Мёбиуса - первая односторонняя поверхность, которую открыл учёный. Чудесные свойства листа Мебиуса привели к новым открытиям и изобретениям (иногда очень полезным, а иногда и совершенно бесполезным). В реферате я попытался описать свойства этой поверхности, показать её значимость на практике, доказать, что лента Мёбиуса - топологическая фигура.

Лента Мебиуса вдохновила многих художников на создание известных скульптур, картин и графики. Мотив Ленты Мебиуса встречается в названиях художественных произведений, общественных заведений, логотипах. Многие физические явления используют для объяснения лист Мебиуса. Ученые генетики рассматривают код ДНК в качестве модели ленты Мебиуса. Лист Мебиуса применяется для усовершенствования технических приборов. Загадочная лента Мебиуса применяется для показа фокусов в цирке.

Если у ременной передачи ремень сделать в виде ленты Мёбиуса, то его поверхность будет изнашиваться в два раза медленнее, чем у обычного кольца. Почему? В работе ремня принимает участие вся поверхность, а не только внутренняя ее часть, как у обычной ременной передачи. Поэтому в виде ленты Мёбиуса хорошо делать конвейерные ленты.

В ХХ веке были созданы особые кассеты для магнитофона, которые дали возможность слушать магнитофонные кассеты «с двух сторон», не меняя их местами. Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

Лист Мёбиуса был эмблемой извеcтной серии научно-популярных книг «Библиотечка «Квант»». Он также постоянно встречается в научной фантастике. Кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина. В рассказе «Лист Мёбиуса» Дейча бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе Клифтона «На ленте Мёбиуса».

Использованная литература

  1. М. Гарднер «Математические чудеса и тайны», «Наука» 1978 г., стр. 43-48.
  2. Е.С. Смирнова «Курс наглядной геометрии» 6 класс, «Просвещение» 2002 г., стр. 63-67.
  3. Современный словарь иностранных слов, «Русский язык» 1993 г., стр. 146, 468, 579, 612.
  4. И.Ф. Шарыгин, Л.Н. Еранжиева «Наглядная геометрия» 5-6 класс, «Дрофа» 2000 г., стр. 69-72.
  5. Энциклопедия для детей «Математика», «Аванта+» 2001 г., стр. 111-112.
  6. Б.А. Кордемский «Топологические опыты своими руками», научно-популярный журнал «Квант» 1974 г., №3, стр. 73-75.
Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году . Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые (топологически они, однако, неразличимы).

Лист Мёбиуса иногда называют прародителем символа бесконечности , так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Это не соответствует действительности, так как символ использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).

Свойства

  • Если разреза́ть ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую называют «афганская лента». Если теперь эту ленту разрезать вдоль посередине, получаются две ленты, намотаные друг на друга.
  • Если разреза́ть ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна - более тонкая лента Мёбиуса, другая - длинная лента с двумя полуоборотами (Афганская лента).
  • Другие интересные комбинации лент могут быть получены из лент с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника . Разрез ленты с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Геометрия и топология

Одним из способов представления листа Мёбиуса как подмножества является параметризация:

где и . Эти формулы задают ленту Мёбиуса ширины 1, чей центральный круг имеет радиус 1, лежит в плоскости x - y с центром в . Параметр u пробегает вдоль ленты, в то время как v задает расстояние от края.

Лист Мёбиуса - это также пространство нетривиального расслоения над окружностью с слоем отрезок.

Подобные объекты

Близким «странным» геометрическим объектом является бутылка Клейна . Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Другое похожее множество - сфера с плёнкой. Если проколоть отверстие в сфере с плёнкой, тогда то что останется будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет сфера с плёнкой. Чтобы визуализировать это, полезно деформировать ленту Мёбиуса так, чтобы её граница стала обычным кругом. Такую фигуру называют «пересечённая крышка» (пересечённая крышка может также означать ту же фигуру с приклееным диском, то есть погружение проективной плоскости в ).

Существует распространённое заблуждение, что пересечённая крышка не может быть сформирована в трёх измерениях без самопересекающейся поверхности. На самом деле возможно поместить ленту Мёбиуса в с границей, являющейся идеальным кругом. Идея состоит в следующем - пусть C будет единичным кругом в плоскости x y в . Соединив антиподные точки на C , то есть, точки под углами θ и θ + π дугой круга, получим, что для θ между 0 и π / 2 дуги лежат выше плоскости x y , а для других θ ниже (причём в двух местах дуги лежат в плоскости x y ).

Можно заметить, что если диск приклеивается к граничной окружности, то самопересечение получающейся сферы с плёнкой неизбежно в трёхмерном пространстве. В терминах задания сторон квадрата, как было показано выше, сфера с плёнкой получается склеиванием двух оставшихся сторон с сохранением ориентации.

Открытые проблемы

ОТВЕТ : Таких формул существует бесконечно много, см., напр., .

Сложнее найти форму, которая при этом минимизирует упругую энергию изгиба. Эта задача, впервые поставленная Садовским (M. Sadowsky ) в 1930 году, была недавно решена, см. . Однако решение не описывается алгебраической формулой, и маловероятно, что такая формула вообще существует. Чтобы найти пространственную равновесную форму бумажной ленты Мёбиуса, необходимо решить краевую задачу для системы дифференциально-алгебраических уравнений.

Искусство и технология

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных - лист Мёбиуса II , показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

Лист Мёбиуса также постоянно встречается в научной фантастике , например в рассказе Артура Кларка «Стена Темноты» . Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщенным листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина , цикл «В глубине Великого Кристалла » (напр. «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус » режиссёра Густаво Москера. Также идея ленты Мебиуса используется в рассказе М. Клифтона «На ленте Мебиуса».

С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея А. Шепелёва «Echo» (СПб.: Амфора, 2003). Из аннотации к книге: «„Echo“ - литературная аналогия кольца Мёбиуса: две сюжетные линии - „мальчиков“ и „девочек“ - переплетаются, перетекают друг в друга, но не пересекаются».

Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Капельманс, Виктор Иванович
  • Капече, Карло Сиджизмондо

Смотреть что такое "Лист Мёбиуса" в других словарях:

    Лист мёбиуса - Лента Мёбиуса Лист Мёбиуса (лента Мёбиуса) топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не… … Википедия

    Лист Мёбиуса - (также лента Мёбиуса) топологический объект, простейшая односторонняя поверхность с краем; попасть из одной точки этой поверхности в любую другую можно, не пересекая края. Название – по имени А. Ф. Мёбиуса. Август Фердинанд Мёбиус August… … Судьба эпонимов. Словарь-справочник

    лист Мёбиуса - топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. Попасть из одной точки поверхности в любую другую можно, не пересекая края ленты. На самом деле все очень просто… … Универсальный дополнительный практический толковый словарь И. Мостицкого

    Лист (значения) - Лист: Лист вегетативный орган растений. Листовой материал тонкий, плоский кусок какого либо материала, например: лист фанеры, лист железа, лист бумаги и т. д. Типографика Лист (книгопечатание) устаревшая единица измерения… … Википедия