Числовая окружность на координатной плоскости рисунок. Окружность на координатной плоскости


Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.

Дата: Урок 1
тема: Числовая окружность на координатной прямой

Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат; формировать умение находить декартовы координаты точек числовой окружности и выполнять обратное действие: зная декартовы координаты точки, определять её числовое значение на числовой окружности.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

1. Разместив числовую окружность в декартовой системе координат, подробно разбираем свойства точек числовой окружности, находящихся в различных координатных четвертях.

Для точки М числовой окружности используют запись М (t ), если речь идет о криволинейной координате точки М , или запись М (х ; у ), если речь идет о декартовых координатах точки.

2. Отыскание декартовых координат «хороших» точек числовой окружности. Речь идет о переходе от записи М (t ) к М (х ; у ).

3. Отыскание знаков координат «плохих» точек числовой окружности. Если, например, М (2) = М (х ; у ), то х  0; у  0. (школьники учатся определять знаки тригонометрических функций по четвертям числовой окружности.)

1. № 5.1 (а; б), № 5.2 (а; б), № 5.3 (а; б).

Данная группа заданий направлена на формирование умения отыскивать декартовы координаты «хороших» точек на числовой окружности.

Решение:

5.1 (а).

2. № 5.4 (а; б), № 5.5 (а; б).

Эта группа заданий направлена на формирование умений находить криволинейные координаты точки по её декартовым координатам.

Решение:

5.5 (б).

3. № 5.10 (а; б).

Данное упражнение направлено на формирование умения находить декартовы координаты «плохих» точек.

V. Итоги урока.

Вопросы учащимся:

– Что собой представляет модель – числовая окружность на координатной плоскости?

– Как, зная криволинейные координаты точки на числовой окружности, найти её декартовы координаты и наоборот?

Домашнее задание: № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).

Дата: Урок 2
ТЕМА: Решение задач на модели «числовая окружность на координатной плоскости»

Цели: продолжить формирование умения переходить от криволинейных координат точки на числовой окружности к декартовым координатам; формировать умение отыскивать на числовой окружности точки, координаты которых удовлетворяют заданному уравнению или неравенству.

Ход урока

I. Организационный момент.

II. Устная работа.

1. Назовите криволинейные и декартовы координаты точек на числовой окружности.

2. Сопоставьте дугу на окружности и её аналитическую запись.

III. Объяснение нового материала.

2. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному уравнению.

Рассматриваем примеры 2 и 3 со с. 41–42 учебника.

Важность этой «игры» очевидна: учащиеся готовятся к решению простейших тригонометрических уравнений вида Для понимания сути дела следует прежде всего научить школьников решать эти уравнения с помощью числовой окружности, не переходя к готовым формулам.

При рассмотрении примера на нахождение точки с абсциссой обращаем внимание учащихся на возможность объединения ддвух серий ответов в одну формулу:

3. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному неравенству.

Рассматриваем примеры 4–7 со с. 43–44 учебника. Решая подобные задачи, мы готовим учащихся к решению тригонометрических неравенств вида

После рассмотрения примеров учащиеся могут самостоятельно сформулировать алгоритм решения неравенств указанного типа:

1) от аналитической модели переходим к геометрической модели – дуга МР числовой окружности;

2) составляем ядро аналитической записи МР ; для дуги получаем

3) составляем общую запись:

IV. Формирование умений и навыков.

1-я группа. Нахождение точки на числовой окружности с координатой, удовлетворяющей заданному уравнению.

№ 5.6 (а; б) – № 5.9 (а; б).

В процессе работы над этими упражнениями отрабатываем пошаговость выполнения: запись ядра точки, аналитической записи.

2-я группа. Нахождение точек на числовой окружности с координатой, удовлетворяющей заданному неравенству.

№ 5.11 (а; б) – 5.14 (а;б).

Главное умение, которое должны приобрести школьники при выполнении данных упражнений, – это составление ядра аналитической записи дуги.

V. Самостоятельная работа.

Вариант 1

1. Обозначьте на числовой окружности точку, которая соответствует заданному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной абсциссой и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с ординатой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

Вариант 2

1. Обозначьте на числовой окружности точку, которая соответствует данному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной ординатой у = 0,5 и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с абсциссой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

VI. Итоги урока.

Вопросы учащимся:

– Как найти на окружности точку, абсцисса которой удовлетворяет заданному уравнению?

– Как найти на окружности точку, ордината которой удовлетворяет заданному уравнению?

– Назовите алгоритм решения неравенств с помощью числовой окружности.

Домашнее задание: № 5.6 (в; г) – № 5.9 (в; г),

№ 5.11 (в; г) – № 5.14 (в; г).

Числовой окружности в 10 классе уделяется достаточно много времени. Это связано со значимостью этого математического объекта для всего курса математики.

Огромное значение для хорошего усвоения материала имеет правильная подборка средств обучения. К наиболее эффективным таким средствам относятся видеоуроки. В последнее время они достигают пика популярности. Поэтому автор не стал отставать от современности и разработал в помощь учителям математики столь замечательное пособие - видеоурок по теме «Числовая окружность на координатной плоскости».

Данный урок по длительности занимает 15:22 минут. Это практически максимальное время, которое может затратить учитель на самостоятельное объяснение материала по теме. Так как на объяснение нового материала уходит столько много времени, то на закрепление необходимо подобрать самые эффективные задания и упражнения, а также выделить еще один урок, где обучающиеся будут решать задания по данной теме.

Урок начинается с изображения числовой окружности в системе координат. Автор строит эту окружность и поясняет свои действия. Затем автор называет точки пересечения числовой окружности с осями координат. Далее поясняется, какие координаты будут иметь точки окружности в разных четвертях.

После этого автор напоминает, как выглядит уравнение окружности. И вниманию слушателей представляется два макета с изображением некоторых точек на окружности. Благодаря этому, на следующем шаге автор показывает, как находятся координаты точек окружности, соответствующие определенным числам, отмеченным на шаблонах. Так получается таблица значений переменных xи y в уравнении окружности.

Далее предлагается рассмотреть пример, где необходимо определить координаты точек окружности. Перед тем, как начинать решать пример, вводится некоторое замечание, которое помогает при решении. А затем на экране появляется полное, четко структурированное и наполненное иллюстрациями решение. Здесь также присутствуют таблицы, которые облегчают понимание сущность примера.

Затем рассматриваются еще шесть примеров, которые менее трудоемкие, чем первый, но не менее важные и отражающие главную идею урока. Здесь решения представлены в полном объеме, с подробным рассказом и с элементами наглядности. А именно, в решении присутствуют рисунки, иллюстрирующие ход решения, и математическая запись, формирующая математическую грамотность обучающихся.

Учитель может ограничиться и теми примерами,которые рассмотрены в уроке, но этого может быть недостаточно для качественного усвоения материала. Поэтому подобрать задания для закрепления просто крайне важно.

Урок может быть полезен не только учителям, время которых постоянно ограничено, но и обучающимся. Особенно тем, кто получает семейное образование или занимается самообразованием. Материалами могут пользоваться те обучающиеся, которые пропустили урок по данной теме.

ТЕКСТОВАЯ РАСШИФРОВКА:

Тема нашего урока «ЧИСЛОВАЯ ОКРУЖНОСТЬ НА КООРДИНАТНОЙ ПЛОСКОСТИ»

Мы уже знакомы с декартовой прямоугольной системой координат xOy (икс о игрек). В этой системе координат расположим числовую окружность так, чтобы центр окружности был совмещен с началом координат, а ее радиус примем за масштабный отрезок.

Начальная точка А числовой окружности совмещена с точкой с координатами (1;0) , В - с точкой (0;1), С - с (-1;0)(минус один, нуль), а D - с (0; -1)(нуль, минус один).

(смотри рис 1)

Так как каждая точка числовой окружности имеет в системе xOy (икс о игрек) свои координаты, то для точек первой четверти икх больше нуля и игрек больше нуля;

Во-второй четверти икх меньше нуля и игрек больше нуля,

для точек третьей четверти икх меньше нуля и игрек меньше нуля,

а для четвертой четверти икх больше нуля и игрек меньше нуля

Для любой точки E (x;y)(с координатами икс, игрек) числовой окружности выполняются неравенства -1≤ х≤ 1, -1≤у≤1 (икс больше либо равно минус один, но меньше либо равно один; игрек больше либо равно минус один, но меньше либо равно один).

Вспомним, что уравнение окружности радиусом R c центром в начале координат имеет вид х 2 + у 2 =R 2 (икс квадрат плюс игрек квадрат равно эр квадрат). А для единичной окружности R =1, поэтому получаем х 2 + у 2 = 1

(икс квадрат плюс игрек квадрат равно один).

Найдем координаты точек числовой окружности, которые представлены на двух макетах (см. рис 2, 3)

Пусть точка E, которая соответствует

(пи на четыре) - середина первой четверти изображенная на рисунке. Из точки E опустим перпендикуляр EK на прямую ОА и рассмотрим треугольник ОEK. Угол АОЕ =45 0 , так как дуга АЕ составляет половину дуги АВ. Следовательно, треугольник ОЕК - равнобедренный прямоугольный, у которого ОК = ЕК. Значит, абсцисса и ордината точки Е равны, т.е. икс равно игрек. Чтобы найти координаты точки Е, решим систему уравнений: (икс равно игрек- первое уравнение системы и икс квадрат плюс игрек квадрат равно один - второе уравнение системы).Во второе уравнение системы вместо х подставим у, получим 2у 2 =1(два игрек квадрат равно единице), откуда у= = (игрек равно один деленное на корень из двух равно корень из двух деленное на два) (ордината положительна).Это значит, что точка Е в прямоугольной системе координат имеет координаты(,)(корень из двух деленное на два, корень из двух деленное на два).

Рассуждая аналогично, найдем координаты для точек, соответствующих другим числам первого макета и получим: соответствует точка с координатами (- ,) (минус корень из двух деленное на два, корень из двух деленное на два); для - (- ,-) (минус корень из двух деленное на два, минус корень из двух деленное на два); для (семь пи на четыре) (,)(корень из двух деленное на два, минус корень из двух деленное на два).

Пусть точка D соответствует (рис.5). Опустим перпендикуляр из DР(дэ пэ) на ОА и рассмотрим треугольник ОDР. Гипотенуза этого треугольника OD равна радиусу единичной окружности, то есть единице, а угол DОР равен тридцати градусам, так как дуга АD = диги АВ(а дэ равно одной трети а бэ), а дуга АВ равна девяносто градусов. Следовательно, DР = (дэ пэ равно одной второй О дэ равно одной второй) Так как катет, лежащий против угла в тридцать градусов равен половине гипотенузы, то есть у = (игрек равно одной второй). Применяя теорему Пифагора, получим ОР 2 = ОD 2 - DР 2 (о пэ квадрат равно о дэ квадрат минус дэ пэ квадрат), но ОР = х (о пэ равно икс) . Значит, х 2 = ОD 2 - DР 2 =

значит, х 2 = (икс квадрат равно трем четвертым) и х = (икс равно корень из трех на два).

Икс положительное, т.к. находится в первой четверти. Получили, что точка D в прямоугольной системе координат имеет координаты (,) корень из трех деленное на два, одна вторая.

Рассуждая аналогичным образом, найдем координаты для точек, соответствующих другим числам второго макета и все полученные данные запишем в таблицы:

Рассмотрим примеры.

ПРИМЕР1. Найдите координаты точек числовой окружности: а) С 1 ();

б) С 2 (); в) С 3 (41π); г) С 4 (- 26π). (цэ один соответствующая тридцать пять пи на четыре, цэ два соответствующая минус сорока девяти пи на три, цэ три соответствующая сорок одному пи, цэ четыре соответствующая минус двадцати шести пи).

Решение. Воспользуемся утверждение, полученным ранее: если точка D числовой окружности соответствуют числу t, то она соответствует и любому числу вида t + 2πk(тэ плюс два пи ка), где ка -любое целое число, т.е. kϵZ (ка принадлежит зэт).

а) Получим = ∙ π = (8 +) ∙π = + 2π ∙ 4.(тридцать пять пи на четыре равно тридцать пять на четыре, умноженное на пи равно сумме восьми и трех четвертых, умноженной на пи равно три пи на четыре плюс произведение двух пи на четыре).Это значит, что числу тридцать пять пи на четыре соответствует та же точка числовой окружности, что и числу три пи на четыре. Используя таблицу 1, получим С 1 () = С 1 (- ;) .

б) Аналогично координаты С 2: = ∙ π = - (16 + ∙π = + 2π ∙ (- 8). Значит, числу

соответствует та же точка числовой окружности, что и числу. А числу соответствует на числовой окружности та же точка, что и числу

(показать второй макет и таблицу 2). Для точки имеем х = , у =.

в) 41π = 40π + π = π + 2π ∙ 20.Значит, числу 41π соответствует та же точка числовой окружности, что и числу π - это точка с координатами (-1 ; 0).

г) - 26π = 0 + 2π ∙ (- 13), то есть числу - 26π соответствует та же точка числовой окружности, что и числу ноль, - это точка с координатами (1;0).

ПРИМЕР 2. Найти на числовой окружности точки с ординатой у =

Решение. Прямая у = пересекает числовую окружность в двух точках. Одна точка соответствует числу, вторая точка соответствует числу,

Следовательно все точки получаем прибавляя полный оборот 2πk где k показывает сколько полных оборотов делает точка, т.е. получаем,

а любому числу все числа вида + 2πk. Часто в таких случаях говорят, что получили две серии значений: + 2πk, + 2πk.

ПРИМЕР 3. Найти на числовой окружности точки с абсциссой х = и записать, каким числам t они соответствуют.

Решение. Прямая х = пересекает числовую окружность в двух точках. Одна точка соответствует числу (смотри второй макет),

а значит и любому числу вида + 2πk. А вторая точка соответствует числу, а значит, и любому числу вида + 2πk. Эти две серии значений можно охватить одной записью: ± + 2πk(плюс минус два пи на три плюс два пи ка).

ПРИМЕР 4. Найти на числовой окружности точки с ординатой у > и записать, каким числам t они соответствуют.

Прямая у = пересекает числовую окружность в двух точках M и P. А неравенству у > соответствуют точки открытой дуги МР, это значит дуги без концов (то есть без и) , при движении по окружности против часовой стрелки, начиная с точки М, а заканчивая в точке Р. Значит, ядром аналитической записи дуги МР является неравенство < t < (тэ больше, чем пи на три, но меньше двух пи на три) , а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk(тэ больше, чем пи на три плюс два пи ка, но меньше двух пи на три плюс два пи ка).

ПРИМЕР5. Найти на числовой окружности точки с ординатой у < и записать, каким числам t они соответствуют.

Прямая у = пересекает числовую окружность в двух точках М и Р. А неравенству у < соответствуют точки открытой дуги РМ при движении по окружности против часовой стрелки, начиная с точки Р, а заканчивая в точке М. Значит, ядром аналитической записи дуги РМ является неравенство < t < (тэ больше, чем минус четыре пи на три, но меньше пи на три) , а сама аналитическая запись дуги имеет вид

2πk < t < + 2πk (тэ больше, чем минус четыре пи на три плюс два пи ка, но меньше пи на три плюс два пи ка).

ПРИМЕР 6. Найти на числовой окружности точки с абсциссой х > и записать, каким числам t они соответствуют.

Прямая х = пересекает числовую окружность в двух точках М и Р. Неравенству х > соответствуют точки открытой дуги РМ при движении по окружности против часовой стрелки с началом в точке Р, которая соответствует,и концом в точке М, которая соответствует. Значит, ядром аналитической записи дуги РМ является неравенство < t <

(тэ больше, чем минус два пи на три, но меньше двух пи на три), а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk (тэ больше, чем минус два пи на три плюс два пи ка, но меньше двух пи на три плюс два пи ка).

ПРИМЕР 7. Найти на числовой окружности точки с абсциссой х < и записать, каким числам t они соответствуют.

Прямая х = пересекает числовую окружность в двух точках М и Р. Неравенству х< соответствуют точки открытой дуги МР при движении по окружности против часовой стрелки с началом в точке М, которая соответствует, и концом в точке Р, которая соответствует. Значит, ядром аналитической записи дуги МР является неравенство < t <

(тэ больше, чем два пи на три, но меньше четырех пи на три), а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk (тэ больше, чем два пи на три плюс два пи ка, но меньше четырех пи на три плюс два пи ка).

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 1

ХМАО-Югра

Разработка урока

в 10 «б» классе

по алгебре и началам анализа

Надежда Михайловна

учитель математики

г. Советский

Тема: ТРИГОНОМЕТРИЯ

Тригонометрические функции

Тригонометрические уравнения

Тригонометрические преобразования

Числовая окружность на

координатной плоскости

Преподавание предмета ведется по блочно- модульной технологии.

Данный урок один из уроков изучения нового материала. Поэтому основное время урока отводится именно на изучение нового материала, причем большую часть этой работы ученики выполняют самостоятельно.

Виды деятельности учащихся на уроке: фронтальная, самостоятельная и индивидуальная работы.

Так как на уроке необходимо проделать большую по объему работу и обязательно проконтролировать результаты ученической деятельности, используется интерактивная доска на этапах актуализации знаний и изучения нового материала. Для более наглядного представления наложения числовой окружности на координатную плоскость и для рефлексии содержания учебного материала в конце учебного занятия используются и презентации Power Point.

познавательная

Учить самостоятельно добывать знания

воспитывающая

Воспитывать собранность, ответственность, усердие

развивающая

Учить анализировать, сравнивать, строить аналогии

План урока:

1) Организационный момент, тема, цель урока 2 мин.

2) Актуализация знаний 4 мин .

3) Изучение нового материала 30 мин .

4) Рефлексия 3 мин.

5) Итог урока 1 мин.

Организационный момент

Числовая окружность

координатной плоскости

рассмотреть числовую окружность на координатной плоскости; вместе найти координаты двух точек; далее самостоятельно составить таблицы значений координат других основных точек окружности;

проверить умение находить координаты точек числовой окружности.

Актуализация знаний

В курсе геометрии 9 класса изучали следующий

материал:

На единичной полуокружности (R = 1) рассмотрели точку М с координатами х и у

Выдержки из учебника геометрии

Научившись находить координаты точки единичной окружности,

с легкостью перейдём к их другим названиям: синусам и косинусам, т.е.

к основной теме- ТРИГОНОМЕТРИЯ

Первое задание дано на интерактивной доске, где учащимся необходимо расставить точки и соответствующие им числа по местам на числовой окружности, перетащив их пальцем по доске.

Задание 1

Получили результат:

Второе задание дано на интерактивной доске. Ответы закрыты «шторой», открываются по мере решения.

Задание 2

Итог выполнения задания:

Изучение нового материала

Возьмём систему координат и на неё наложим числовую окружность так, чтобы их центры совпали, а горизонтальный радиус окружности совпал с положительным направлением оси ОХ (презентация Power Point)

В результате имеем точки, которые принадлежат одновременно числовой окружности и координатной плоскости. Рассмотрим одну из таких точек, например, точку М (презентация Power Point)

М (t )

Изобразим координаты этой точки

Найдем координаты интересующих нас точек единичной окружности, которые рассмотрели ранее со знаменателями 4, 3 , 6 и числителем π.

Найти координаты точки единичной окружности, соответствующей числу, соответственно и углу

Задание 3

(презентация Power Point)

Изобразим радиус и координаты точки

По теореме Пифагора имеем х 2 + х 2 = 12

Но углы треугольника по π/4 = 45°, значит треугольник – равнобедренный и х = у

Найти координаты точки единичной окружности, соответствующей числам (углам)

Задание 4

(презентация Power Point)

Значит у = 1/2

По теореме Пифагора

Треугольники равны по гипотенузе

и острому углу, значит их катеты равны

На предыдущем уроке учащиеся получили листы с заготовками числовых окружностей и различных таблиц.

Заполнить первую таблицу.

Задание 5

(интерактивная доска)

Сначала в таблицу внести точки окружности, кратные 2 и 4

Проверка результата:

(интерактивная доска)

Заполнить самостоятельно в таблице ординаты и абсциссы данных точек с учетом знаков координат в зависимости от того в какой четверти расположена точка, используя выше полученные длины отрезков для координат точек.

Задание 6

Один из учеников называет полученные результаты, остальные сверяют со своими ответами, затем для успешной корректировки результатов (так как эти таблицы будут использоваться далее в работе при выработке навыков и углублении знаний по теме) показывается правильно заполненная таблица на интерактивной доске.

Проверка результата:

(интерактивная доска)

Заполнить вторую таблицу.

Задание 7

(интерактивная доска)

Сначала в таблицу внести точки окружности, кратные 3 и 6

Проверка результата:

(интерактивная доска)

Заполнить самостоятельно в таблице ординаты и абсциссы данных точек

Задание 8

Проверка результата:

(интерактивная доска)

(презентация Power Point)

Проведем небольшой математический диктант с последующим самоконтролем.

1) Найдите координаты точек единичной окружности:

2 вариант

1 вариант

2) Найдите абсциссы точек единичной окружности:

1) Найдите координаты точек единичной окружности

2 вариант

1 вариант

2) Найдите абсциссы точек единичной окружности

Проверь себя

3) Найдите ординаты точек единичной окружности:

Для себя Вы можете поставить отметку «5» за 4 выполненных примера,

«4» за 3 примера и отметку «3» за 2 примера

Подведение итогов урока

1) В дальнейшем для нахождения значений синуса, косинуса, тангенса и котангенса точек и углов необходимо выучить по заполненным таблицам значения координат точек, принадлежащих первой четверти т.к. далее мы научимся выражать значения координат всех остальных точек через значения точек первой четверти;

2) Готовить теоретические вопросы к зачету.

Домашнее задание:

Итог урока

Оценка ставится наиболее активно работавшим на уроке ученикам. Работа всех учащихся не оценивается, так как ошибки исправляются сразу по ходу урока. Диктант проведен для самоконтроля, для оценивания недостаточный объем.