Классификация внешних источников зажигания. Тепловые источники зажигания Условия образования и виды горючей среды


Страница 4 из 14

ПРОИЗВОДСТВЕННЫЕ ИСТОЧНИКИ ЗАЖИГАНИЯ

Источник зажигания - средство энергетического воздействия, инициирующее возникновение горения данной среды.

Под производственными источниками зажигания следует понимать такие источники, существование или появление которых связано с осуществлением технологических процессов производств.

Производственные источники зажигания характеризуются воспламеняющей способностью, которую оценивают упрощенно - путем сравнения температуры, теплосодержания и времени его теплового действия с соответствующими характеристиками горючей смеси.

При этом считают, что источник тепла опасен как источник зажигания, если:

температура искры Т и больше (или равна) температуре самовоспламенения горючей среды Т св, в контакте с которой находится искра

Т и ³Т св (1.33)

количество тепла, заключенное в искре, q и больше (или равно) минимальной энергии зажигания горючей среды q мин

q и ³ q мин (1.34)

время действия искры t и (определяется при охлаждении искры до Т св) больше (или равно) периода индукции горючей среды t инд:

t и ³ t инд.(1.35)

Если хотя бы одно из названных условий не выполняется, то искра не обладает воспламеняющейся способностью и, следовательно, она не может быть отнесена к источнику зажигания.

Параметры предполагаемого источника зажигания можно определить расчетным или опытным путем, а горючей среды - по справочной литературе.

В условиях производства существует большое количество различных источников зажигания.

Вероятность возникновения источника зажигания принимают равной нулю в следующих случаях:

  • если источник не способен нагреть вещество выше 80% значения температуры самовоспламенения вещества или температуры самовозгорания вещества, имеющего склонность к тепловому самовозгоранию;
  • если энергия, переданная тепловым источником горючему веществу (паро-, газо-, пылевоздушной смеси) ниже 40% минимальной энергии зажигания;
  • если за время остывания теплового источника он не способен нагреть горючие вещества выше температуры воспламенения;
  • если время воздействия теплового источника меньше суммы периода индукции горючей среды и времени нагрева локального объема этой среды от начальной температуры до температуры воспламенения.

По времени действия различают:

По природе проявления различают следующие группы источников зажигания:

  • открытый огонь и раскаленные продукты сгорания;
  • тепловое проявление механической энергии;
  • тепловое проявление химических реакций;
  • тепловое проявление электрической энергии.

Следует иметь в виду, что эта классификация носит условный характер. Так, открытый огонь и раскаленные продукты сгорания имеют химическую природу проявления. Однако, учитывая особую пожарную опасность, эту группу принято рассматривать отдельно.

Открытый огонь и раскаленные продукты сгорания.

В условиях производства для осуществления многих технологических процессов используется открытое пламя, например, в аппаратах огневого действия (трубчатых печах, реакторах, сушилках и т. п.), при производстве огневых работ, при сжигании выбрасываемых в атмосферу паров и газов на факельных установках.

Поэтому открытый огонь и раскаленные продукты сгорания обычно используются или образуются в огневых печах, заводских факельных установках и при проведении огневых работ. Кроме этого, высоконагретые продукты сгорания, образующиеся при сжигании топлива в топках и двигателях внутреннего сгорания; искры топок и двигателей, образующиеся в результате неполного сгорания твердого, жидкого или газообразного топлива.

Мероприятия, предупреждающие пожары от открытого огня и раскаленных продуктов горения:

1. Изоляция аппаратов огневого действия:

1.1. рациональное размещение на открытых площадках;

1.2. устройство противопожарных разрывов;

1.3. устройство между аппаратами огневого действия и газопароопасными аппаратами экранов в виде стен или отдельных закрытых линий, выполненных из негорючих материалов;

1.4. устройство паровых завес по периметру печей с газоопасных сторон.

2. Соблюдение правил пожарной безопасности при проведении огневых работ.

3. Изоляция высоконагретых продуктов сгорания:

3.1. контроль за состоянием дымовых каналов;

3.2. защита высоконагретых поверхностей (трубопроводов, дымовых каналов) теплоизоляцией;

3.3. устройство противопожарных разделок и отступок и т.п.

4. Защита от искр при работе топок и двигателей:

4.1. соблюдение оптимальных температур и соотношения между топливом и воздухом в горючей смеси;

4.2. контроль за техническим состоянием и исправностью устройств для сжигания топлива;

4.3. систематическая очистка внутренних поверхностей топок, дымовых каналов и двигателей внутреннего сгорания от сажи и нагаромасляных отложений;

4.4. использование искроуловителей и искрогасителей (рис. 10 … 12).

Рис. 10. Схема гравитационного искроулови-теля:

1 - осадительная камера; 2 - смесь потока дымовых газов с искрами; 3 - направление движения дымовых газов; 4 - направление движения искр

Рис. 11. Схема инерционного искроулови-теля:

1 - топка; 2 - перегородка; 3 - направление движения дымовых газов; 4 - направление движения искр; 5 - искроосадительная камера

Рис. 12. Схема центробежного искроуловителя циклонного типа:

1 - корпус искроуловителя; 2 - смесь потока дымовых газов с искрами; 3 - тангенциальный патрубок; 4 - направление движения дымовых газов; 5 - направление движения искр; 6 - выгрузка охлажденных искр

5. Ограничение источников огня, не вызванных потребностями технологического процесса:

5.1. оборудование мест для курения;

5.2. применение горячей воды, пара, для обогрева замерзших труб;

5.3. распаривание и очистка скребками отложений в аппаратах вместо их выжигания.

Тепловое проявление механической энергии.

При взаимном трении тел за счет совершения механической работы происходит их разогрев. При этом механическая энергия переходит в тепловую. Тепловой нагрев, т. е. температура трущихся тел в зависимости от условий трения может быть достаточной для воспламенения горючих веществ и материалов. При этом нагретые тела выступают в качестве источника зажигания.

В производственных условиях наиболее распространенными случаями опасного нагрева тел при трении являются:

  • удары твердых тел с образованием искр;
  • поверхностное трение тел;
  • сжатие газов.

Для производственных целей широко используют открытый огонь, огневые печи, реакторы, факелы для сжигания паров и газов. При производстве ремонтных работ часто используют пламя горелок и паяльных ламп, применяют факелы для отогрева замерзших труб, костры для прогрева грунта или сжигания отходов. Температура пламени, а также количество выделяющегося при этом тепла достаточны для воспламенения почти всех горючих веществ. Поэтому главная защита от данных источников зажигания - изоляция от возможного соприкосновения с ними горючих паров и газов (при авариях и повреждениях соседних аппаратов).

При проектировании технологических установок «огневые» аппараты следует изолировать, размещая их в закрытых помещениях, обособленно от других аппаратов. На открытых площадках между «огневыми» аппаратами и пожаровзрывоопасными установками (например, открытыми этажерками) целесообразно размещать закрытые здания, которые будут выполнять роль защитных преград.

Аппараты огневого действия размещают на площадках с соблюдением разрывов, величина которых в зависимости от характера и режима работы смежных аппаратов и сооружений регламентируется нормативными актами.

Особенности пожарной опасности и инженерно-технические мероприятия противопожарной защиты огневых печей как наиболее типичных и широко распространенных аппаратов огневого действия детально рассмотрены в главе 12 данного учебника.

К аппаратам огневого действия следует отнести факельные установки для сжигания газовых выбросов. Недочеты в проектировании и устройстве факельных установок могут привести к тепловому воздействию факела пламени на расположенные вблизи здания, сооружения и аппараты с горючими газами и жидкостями, а также к загазованию территории при внезапном потухании пламени. Следует отметить, что факелы общезаводские или общецеховые менее опасны, чем факелы, расположенные непосредственно на аппаратах, так как имеют большую высоту вертикального ствола и размещены на значительном расстоянии (60... 100 м и более) от взрыво- и пожароопасных зданий и сооружений.

Факельная установка (рис. 5.3) состоит из системы подводящих трубопроводов, предохранительных устройств (огнепреградителей) и факельной горелки. Конструкция горелки должна обеспечивать непрерывность сжигания подаваемого газа путем устройства легко зажигаемого и защищенного от ветра «маяка» (постоянно горящей горелки).

Рис. 5.3. Факел для сжигания газов: / - линия подачи водяного пара; 2 - линия поджигания дежурной горелки;

3 - линия подачи газа к дежурной горелке; 4 - горелка; 5 - ствол факела; 6 - огнепреградитель; 7 - сепаратор;

8 - линия, подводящая газ на сжигание

Поджигание газовой смеси в дежурной горелке производят с помощью так называемого бегущего пламени (предварительно подготовленная горючая смесь воспламеняется электрозапалом, и пламя, перемещаясь вверх, поджигает газ горелки). Чтобы уменьшить образование дыма и искр, к факельной горелке подводят водяной пар.

Следует отметить, что побочные продукты и отходы производства выгоднее не сжигать на факельных установках, а утилизировать.

Источники открытого огня - факелы - нередко используют для разогрева застывшего продукта в трубах, для освещения при осмотре аппаратов в темноте, например при замере уровня жидкостей, при разведении костров на территории объекта с ЛВЖ и ГЖ и т. п. Источником открытого огня является и зажженная спичка. Вот характерный пример. На заводе химического волокна капролактам размещался штабелями в полиэтиленовых мешках, которые, в свою очередь, находились в джутовых мешках (в настоящее время перед поступлением смолы на склад джутовую упаковку снимают). Поздно вечером ученик аппаратчика, разрезая мешок, уронил нож и, чтобы найти его, зажег спичку. От пламени спички воспламенился джутовый мешок. Огонь быстро распространился по штабелю. Возник пожар.

Воспламенение многих веществ возможно от таких «малокалорийных» источников зажигания, как тлеющий окурок сигареты или "Папиросы. Факты и исследования показали, что тлеющие сигарета и папироса имеют температуру 350...400° С и длительность тления 12 мин и более. Контакт горящего окурка с твердым и волокнистым веществом или пылью вызывает появление очага тления, который при достаточном доступе воздуха и при условиях, способствующих аккумуляции выделяющегося тепла, вызывает пламенное горение вещества. Так, тлеющая папироса или сигарета при наличии оптимальных условий вызывает воспламенение стружек и древесины через 1...1.5 и 2...3 ч соответственно (пламя появляется при температуре 450...500° С); бумажных отходов, сена и соломы -. через 0,25...1 ч (в зависимости от их плотности); хлопчатобумажных тканей - через 0,5... 1 ч (в зависимости от объемного веса ткани).

В цехах, складах и на территории пожаровзрывоопасных объектов курение разрешается только в специально оборудованных местах.

Для отогрева замерзших труб вместо факелов следует использовать горячую воду, водяной пар или индукционные грелки. Твердые отложения в трубопроводах распаривают и очищают скребками, а при необходимости выжигания трубы демонтируют и осуществляют этот процесс на местах постоянного производства огневых работ или на специально выделенных площадках вне цеха. Выжигание твердых и жидких горючих отложений в воздуховодах без их демонтажа может быть допущено только в исключительных случаях с разрешения госпожнадзора и под непосредственным наблюдением ответственных работников цеха.

К производственным источникам зажигания, как было сказано выше, следует отнести высоконагретые продукты горения - газо- образные продукты горения, образующиеся при горении твердых, жидких и газообразных веществ, имеющих высокую температуру (800...1200° С и выше). При такой температуре топочных газов наружная поверхность стенок аппаратов может быть нагрета вы­ше температуры самовоспламенения образующихся в производст­ве веществ. Особенно это относится к металлическим выхлопным трубам топок и двигателей внутреннего сгорания

Значительную пожарную опасность представляет выход горючих газов через неисправности кладки топок, дымовых каналов и при повреждении выхлопных труб двигателей внутреннего сгорания. Поэтому при эксплуатации топок и двигателей внутреннего сгорания нужно следить за состоянием кладки дымовых каналов и боровов, не допускать неплотностей и прогара выхлопных труб,а также загрязнения их поверхности горючей пылью или наличия вблизи нагретых поверхностей каких-либо горючих веществ.

Высоконагретые поверхности металлических труб защищают обычно теплоизоляцией с защитными кожухами. Предельно допустимая температура поверхности труб (кожухов) не должна превышать 80% температуры самовоспламенения обращающихся в производстве горючих веществ.

Нередко продукты горения используют в качестве теплоносителя при сушке древесины, щепы, волокнистых; и сыпучих органических материалов. Пожарная безопасность таких устройств рассматривается в главе 15 данного учебника.

Производственным источником зажигания являются искры, возникающие при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в газовом потоке, которые образуются в результате неполного сгорания или механического уноса горючих веществ и продуктов коррозии. Температура такой твердой частицы достаточно высока, но запас тепловой энергии невелик, так как мала масса искры. Искра способна воспламенить только вещества, достаточно подготовленные к горению, а к таким веществам относятся газо- и паровоздушные смеси (особенно при концентрациях, близких к стехиометрическим), осевшая пыль, волокнистые материалы.

Топки «искрят» из-за конструктивных недостатков; из-за использования не того сорта топлива, на которое печь рассчитана; из-за усиленной шуровки и дутья; из-за неполного сгорания топлива (при недостаточной подаче воздуха или чрезмерной подаче топлива); из-за недостаточного распыления жидкого топлива, а также из-за нарушения сроков очистки печей.

Искры и нагар при работе дизельных и карбюраторных двигателей образуются при неправильной регулировке системы подачи топлива и электрозажигания; при загрязнении топлива смазочными маслами и минеральными примесями; при длительной работе двигателя с перегрузками; при нарушении сроков очистки выхлопной системы от нагара.

Устранение причин искрообразования - это поддержание топок и двигателей в хорошем техническом состоянии, соблюдение установленных режимов сжигания топлива, использование только того вида топлива, на которое рассчитаны топка или двигатель, своевременная их очистка, а также устройство дымовых труб такой высоты, чтобы искры догорали и гасли, не выходя из трубы.

Для улавливания и гашения искр используются искроуловители и искрогасители: осадительные камеры, инерционные камеры и циклоны, турбиновихревые уловители, электрофильтры, а также устройства с использованием водяных завес, охлаждения и разбавления газов водяными парами и т. п. Наиболее распространенную группу представляют искроуловители с использованием сил тяжести и инерции (в том числе центробежных сил). Такими искроуловителями оборудуют дымогазовые сушилки, тракторы, комбайны, автомобили, тепловозы и другие аппараты, механизмы и устройства с использованием двигателей внутреннего сгорания и топок.

В искроосадительных камерах используется принцип осаждения искр под действием силы тяжести (рис. 5.4). При малой скорости движения газа в камере подъемная сила потока, воздействующая на искры, оказывается меньше силы тяжести, и искра оседает (см. § 1.4). Такой искроуловитель громоздок и недостаточно эффективен. Поэтому в чистом виде искроосадительные камеры применяют редко. Но принцип, положенный в основу их работы, используют во многих искрогасителях.

Рис. 5.4. Искроуловитель с ис­пользованием силы тяжести: / - искроосадительная камера; 2 - выхлопная труба

Рис. 5.5. Искроуловитель инерционного действия: / - корпус печи; 2 - топка; 3 - искроосадительная камера; 4 - очистное отверстие

В искроуловителях инерционного действия на пути движения газового потока устанавливают отражательные устройства в виде сеток, перегородок, козырьков, жалюзи и т. п. Газовый поток, встречая препятствие, изменяет направление движения, а искры, двигаясь по инерции, ударяются о препятствие, дробятся, теряют скорость, оседают или догорают. Эффективность улавливания искр такими приборами возрастает с увеличением массы искр и скорости их движения.

Простейший искроуловитель инерционного действия показан на рис. 5.5. Следует отметить, что сетчатые искроуловители малоэффективны: отверстия сеток быстро забиваются, сетки прогорают. Более эффективным является инерционный искроуловитель жалюзийного типа (рис. 5.6), который улавливает 90...95% всех искр.

В центробежные искроуловители поток газа вводится тангенциально, благодаря чему приобретает вращательное винтообразное движение. Под воздействием центробежной силы искры отбрасываются к стенке, дробятся, истираются и догорают. Такие искроуловители называют циклонами (рис. 5.7).

Искроуловители-электрофильтры применяют для улавливания искр из газового потока силами электрического притяжения. Установка (рис. 5.8) состоит из источника постоянного тока высокого напряжения (40...75 кВ) А и электрофильтра Б, основными элементами которого являются коронирующие (отрицательно заряженные) и осадительные (положительно заряженные) электроды. Между электродами возникает коронный разряд (или корона), проходя через который газ ионизируется, а искры, сталкиваясь с ионами, приобретают в основном отрицательный заряд, притягиваются к осадительным электродам и осаждаются на них.

Рис. 5.6. Инерционный искроуловитель жалюзийного типа: 1 - линия подачи уловленных искр в циклон;

2 - линия очищенных от искр газов; 3 - жалюзийный искроуловитель; 4 - конические кольца рабочей камеры; 5 - газопровод; 6 - линия возврата газа в жалюзийную камеру; 7 - циклон для очистки газа от искр

Рис. 5.7. Циклонный искроуловитель

Рис. 5.8. Схема электрофильтра: А - машинное отделение; Б - фильтр; / - питающая сеть; 2 - регулятор напряжения; 3 - трансформатор; 4 - выпрямитель; 5 - проходной изолятор; 6 - выход очищенного газа; 7 - коронирующий электрод; 8 - осадительный электрод; 9 - ввод газа с искрами; 10 -бункер

Постепенно на осадительном электроде образуется толстый слой (шуба) отрицательно заряженных отложений частиц пыли и искр, экранирующих его. Поэтому периодически электрофильтр отключается от источника тока, электроды встряхиваются, и осевшие частицы падают в бункер. Степень очистки в электрофильтрах очень высока, так как частицы любых размеров приобретают заряд и при достаточной продолжительности очистки оседают на электроде. Использование электрофильтров во взрывоопасных производствах нежелательно, так как их применение связано с появлением мощных источников зажигания электрической природы (электрические разряды, дуга, короткое замыкание и т. п.) Для более тщательной очистки продуктов горения от искр на пути их движения устанавливают последовательно несколько ступеней искроулавливания, В отличие от искроуловителя, искрогаситель не предотвращает выделения искр в атмосферу, а лишь исключает их пожарную опасность. С помощью искрогасителя уменьшаются температура искр, их размер, теплосодержание.

Большое распространение для выхлопных систем двигателей внутреннего сгорания получили турбинно-вихревые искрогасители центробежного действия (рис. 5.9). Проходя через подвижное лопастное колесо (турбину), поток газа приобретает вращательное движение, за счет чего искры отбрасываются к корпусу, где они истираются и догорают.

Возможны комбинированные защитные устройства с улавливанием и гашением искр, например искрогаситель с водяной завесой.

Следует отметить, что вопросы улавливания и гашения искр при работе топок и двигателей исследованы недостаточно. Нет методик, позволяющих еще на стадии проектирования топки и двигателя определять реальную опасность их «искровыделения». Поиск типа и конструкций искроуловителей и искрогасителей ведется, как правило, эмпирически, поэтому необходима дальнейшая разработка теоретических основ их расчета и конструирования.

В производственных условиях самыми распространенными источниками воспламенения являются:

а) искры, образующиеся при коротких замыканиях, и нагревания участков электросетей и электрооборудования, возникающие при их перегрузках или при появлении больших переходных сопротивлений.

Токи коротких замыканий могут достигать больших величин. Они способны образовать электрическую дугу, что приводит к плавлению проводов, воспламенению изоляции, а также сгораемых предметов, веществ и материалов, находящихся поблизости. Короткие замыкания могут возникать при неправильном подборе и монтаже электросетей и электрооборудования, износе, старении и повреждении изоляции электропроводов и оборудования.

Перегрузки электрических сетей, машин и аппаратов возникают при токовой нагрузке, которая в течение длительного времени превышает величины, допускаемые нормами. Перегрузки возникают также в результате нарушения нормативных требований при проектировании электроснабжения и несоблюдения правил эксплуатации;

б) тепло, выделяющееся при трении во время скольжения подшипников, дисков, ременных передач, а также при выходе газов под высоким давлением и с большой скоростью через малые отверстия;

в) искры, образующиеся при ударах металлических деталей друг о друга или об абразивный инструмент, как, например, удары Лопастей вентилятора о кожух, образование искр при обработке металлов абразивным инструментом и т. п.;

г) тепло, выделяющееся при химическом взаимодействии некоторых веществ и материалов, например, щелочных металлов с водой, окислителей с горючими веществами, а также при самовозгорании веществ, например, промасляной обтирочной ветоши или спецодежды;

д) искровые разряды статического электричества;

е) пламя, лучистая теплота, а также искры, образующиеся, например, при плавке металла и заливке литейных форм, при работе термических печей, закалочных ванн;

ж) искры, образующиеся при электро- и газосварочных работах.

Возникновение пожара возможно предотвратить путем осуществления соответствующих инженерно-технических мероприятий при проектировании и эксплуатации технологического оборудования, энергетических и санитарно-технических установок, а также соблюдением установленных правил и требований пожарной безопасности.

Важнейшими пожарно-профилактическими мероприятиями являются:

правильный выбор электрооборудования и способов его монтажа с учетом пожароопасности окружающей среды, систематический контроль исправности защитных аппаратов и устройств на электрооборудовании, постоянный надзор за эксплуатацией электроустановок и электросетей силами электротехнического персонала;

предупреждение перегрева подшипников, трущихся деталей и механизмов путем своевременной и качественной смазки, контроля за температурой и т. д.;

оборудование эффективной вентиляции, исключающей возможность образования в помещении взрывоопасной смеси, и обеспечение нормальной работы вентиляции в окрасочных и сушильных камерах и других аппаратах;

создание условий, обеспечивающих пожарную безопасность при работе с нагретыми до высокой температуры изделиями и расплавленным металлом, при сварочных и других огневых работах;

изолирование огнедействующих производственных установок и отопительных приборов от сгораемых конструкций и материалов, а также соблюдение режима их эксплуатации;

обеспечение надежной герметизации производственного оборудования и турбопроводов с огнеопасными продуктами и немедленное устранение неисправностей при выявлении утечек продуктов в окружающую среду;

запрещение хранения, транспортирования и содержания на рабочих местах огнеопасных жидкостей и растворов в открытых емкостях (в ведрах, открытых баках и т. п.);

изоляция самовозгорающихся веществ от других веществ и материалов, выполнение правил безопасного их хранения и систематическое контролирование состояния этих веществ;

предупреждение появления искровых разрядов статического электричества при обработке материалов или использовании жидкостей, склонных к электризации;

своевременное удаление промасленных обтирочных материалов и огнеопасных производственных отходов в специальные отведенные для этого места;

проведение разъяснительной работы среди рабочих и служащих по соблюдению правил пожарной безопасности.

При разработке и осуществлении мероприятий по устранению причин возникновения пожаров особое внимание следует уделять пожароопасным производственным цехам и участкам (лакокрасочных покрытий, деревообработки и др.). В этих цехах и на участках необходимо широко применять приборы и аппараты автоматического регулирования параметров, которые влияют на снижение пожарной опасности технологического процесса производства.

Пожар относится к крайне неприятным событиям, которые могут повлечь за собой не только порчу вещей, но и смерть человека. Однако для возникновения возгорания необходимо, чтобы были соблюдены некоторые определенные условия. Главными составляющими являются горючая среда и воздействующие на нее источники зажигания.

В данной статье мы постараемся дать определение этим понятиям, рассмотреть их виды, а также расскажем, как можно предотвратить возгорание путем исключения условий образования горючей среды.

Определение и виды источников зажигания

Началом любого воспламенения можно назвать момент воздействия источника на любое горючее вещество.

Источник зажигания это средство, обладающее достаточным объемом энергии, температурой, которое при длительном воздействии на внешнюю среду способно вызвать воспламенение(горение).

Для того чтобы более точно понять определение, нужно рассмотреть источники зажигания и их классификацию. В основе их разделения лежит тот или иной вид энергии, поэтому источники бывают: электрические, химические, термические и механические.

Если в качестве примера взять обычную квартиру, то условно виды источников зажигания обозначим так:

  • Тепло от электрических обогревателей или водонагревателей
  • Искры, возникающие в процессе сварочных работ, например при ремонте труб
  • Открытый огонь (не потушенная папироса, горящая свеча, камин, зажженная спичка, рабочая конфорка газовой плиты)
  • , а так же вещества. Это горючие ископаемые, вещества химические, некоторые растительные продукты (масла, жиры).
  • Нарушения в работе различных электрических аппаратов и/или приборов (перегрузка, неисправность)

Перечисленные виды это возможные источники зажигания, которые вполне могут привести к пожару Вашей квартире, воздействуя высокой температурой на горючую среду. Дальше рассмотрим, что в нее входит и как она образуется.

Условия образования и виды горючей среды

Горючая среда – это все то, что может воспламениться при воздействии источника зажигания, другими словами, она может представлять собой любую внешнюю среду, воспламеняющуюся при соприкосновении с тем или иным источником зажигания, при этом обладает способностью самостоятельного горения даже после ликвидации этого источника.

Если описать проще, то это все, что есть в помещении, включая, воздух, в котором содержится кислород, являющейся необходимым элементом для начала возгорания. В науке данную среду назвали « ». Усредненной величиной является 50 кг такой среды на 1 м квартиры.

В зависимости от того, что в нее входит, она с разной силой может быть подвержена возгоранию. Существуют 3 класса веществ и материалов: негорючие, трудногорючие и горючие. Следует заметить, что каждое горючее вещество имеет индивидуальную . Температура в 300 о С является максимальной для большинства твердых материалов.

Чтобы узнать, к какому классу пожарной опасности относится то или иное оборудование или вещество необходимо заглянуть в сопроводительный документ.

Что относится к горючей среде

  1. Предметы интерьера и быта (одежда, книги, посуда), а также любое оборудование, имеющее в своем составе горючие материалы.
  2. Пыль, горючие газы (ацетилен, водород, метан, пропан), которые применяются в производствах.
  3. Отделочные и строительные материалы, облицовка, а также кабели, воздуховоды.

Предсказать поведение горючей среды в случае пожара крайне проблематично. В первые минуты обычно пламя устремляется к потолку. По мере того, как температура в помещении повышается, начинают воспламеняться горючие материалы, попадающие под ее действие. Происходит это в хаотичном порядке.

  1. Количество горючего вещества должно быть ограничено.
  2. Потенциальные источники зажигания следует отгородить от горючей среды с помощью использования изолированных отсеков.
  3. Нужно осуществлять контроль над концентрацией окислителя в среде, по возможности сделать ее минимальной.
  4. Поддерживать в помещении такую температуру, при которой риск возгорания будет минимальным.
  5. Оборудование, имеющее высокий класс пожарной опасности следует располагать на открытых территориях.
  6. Использование негорючих илии трудногорючих веществ (материалов).

Профилактические мероприятия по предотвращению пожара

Самым непредсказуемым источником зажигания принято считать открытый огонь. Для того чтобы снизить его опасность, необходимо придерживаться здравого смысла и определенных .

Касаемо курения в тамбурах или жилых помещениях, то для пепла должна быть пепельница, изготовленная из толстого стекла или негорючего пластика. Когда уходите из дома закрывайте окна, т.к. не потушенная сигарета, выброшенная из соседнего балкона, часто становится причиной возникновения пожара, ведь по статистике на балконе хранится много вещей, которые и образуют “пожарную нагрузку”.

К газовым плитам обязательно должны прилагаться сертификаты качества. Если обнаружена неисправность, то необходимо прекратить пользоваться плитой и вызвать мастера. Между плитой и легкосгораемыми предметами, включая строительные конструкции должно выдерживаться расстояние более 20 см. В деревянном доме стены необходимо изолировать от источника зажигания штукатуркой или стальным листом, .

Устанавливать газовые приборы имеет право только специалист. По окончании работы он оформляет акт о пуске прибора в эксплуатацию и выдает гарантию на дальнейшее обслуживание.

Водонагреватели не прикрепляются на неизолированные стены. перед каждым отопительным сезоном.

При износе и неправильной работе технологического оборудования, неисправности электросети, аварийных режимах работы технологических аппаратов, а также при нарушении техники безопасности в горючей среде могут возникать следующие источники зажигания:

Открытый огонь;

Образование искры при ударах металла о металл;

Образование искры от нарушения ТБ при использовании оборудования;

Нарушение правил ПБ при эксплуатации помещения;

Нарушение норм санитарии и хранения продуктов;

Проведение огневых работ;

Возникновение искр при ударах инструмента, трении элементов оборудования;

Неисправности электроприборов.

Внутри технологических аппаратов

При не полном наполнении барабанов карбидом и наличии в них остатков воздуха с определенной влажностью, происходит образование ацетилена в результате взаимодействия карбида с водой. Механические удары, падения, удары барабанов друг о друга при транспортировке, открывание барабанов инструментом, высекающими искры, или сильное нагревание их могут являться причинами взрыва.

Источнками зажигания при эксплуатации ацетиленовых генераторов могут являться: теплота в зоне реакции карбида с водой, искры при ударах ферросилиция (соединение железа с кремнием) о стенки камеры при засыпке карбида в реторты генераторов, при работе стальным инструментом, теплота при самовоспламенении ацетилена.

Вблизи технологических аппаратов

Чаще всего пожары и взрывы возникают в помещениях компрессорных и наполнительных, пожароопасность которых обусловлена высоким давлением в системах, а ацетилен становится опасным уже при давлении свыше 0,2 МПа. При повреждении оборудования, трубопроводов, трубок, шлангов, выходящий из них ацетилен способен образовывать взрывоопасные концентрации паров вбольших объемах.

Анализ возможности распространения пожара (взрыва)

Распространение возникающих пожаров может происходить по поверхности разлившегося ацетилена, а также по ацетиленовым трубопроводам, по ацетиленовоздушной смеси при утечках ацетилена из системы, по каналам для слива известкового ила из генераторов и иловых ям, по трубопроводам системы вентиляции, по дверным, оконным и технологическим проемам.

Условия образования горючей среды в помещение № 4 склада баллонов с ацетиленом. Требования пожарной безопасности к хранению эксплуатации газового оборудования установлен ряд требований к эксплуатации газового оборудования, которые необходимо соблюдать для защиты жизни и имущества от взрыва газовых баллонов, основными требованиями являются:



Баллоны с горючими газами на объектах хранения должны быть защищены от солнечного и иного теплового воздействия.

Окна помещений, где хранятся баллоны с газом, закрашиваются белой краской или оборудуются солнцезащитными негорючими устройствами;

При хранении баллонов на открытых площадках сооружения, защищающие баллоны от осадков и солнечных лучей, выполняются из негорючих материалов;

Баллоны с горючим газом должны храниться отдельно от баллонов с кислородом, сжатым воздухом, хлором, фтором и другими окислителями, а также от баллонов с токсичным газом;

Размещение групповых баллонных установок допускается у глухих (не имеющих проемов) наружных стен зданий. Шкафы и будки, где размещаются баллоны, выполняются из негорючих материалов и имеют естественную вентиляцию, исключающую образование в них взрывоопасных смесей;

В помещениях должны устанавливаться газоанализаторы для контроля за образованием взрывоопасных концентраций. При отсутствии газоанализаторов руководитель организации должен установить порядок отбора и контроля проб газовоздушной среды;

При обнаружении утечки газа из баллонов они должны убираться из помещения склада в безопасное место;

На склад, где размещаются баллоны с горючим газом, не допускаются лица в обуви, подбитой металлическими гвоздями или подковами;

Баллоны с горючим газом, имеющие башмаки, хранятся в вертикальном положении в специальных гнездах, клетях или других устройствах, исключающих их падение. Баллоны, не имеющие башмаков, хранятся в горизонтальном положении на рамах или стеллажах. Высота штабеля в этом случае не должна превышать 1,5 метра, а клапаны должны закрываться предохранительными колпаками и быть обращены в одну сторону;

Хранение каких-либо других веществ, материалов и оборудования в помещениях складов с горючим газом не разрешается;

Помещения складов с горючим газом обеспечиваются естественной вентиляцией.