Сила лоренца. Сила Лоренца Выражение для силы лоренца в векторной форме


Раскройте ладонь левой руки и выпрямите все пальцы. Большой палец отогните под углом в 90 градусов по отношению ко всем остальным пальцам, в одной плоскости с ладонью.

Представьте, что четыре пальца ладони, которые вы держите вместе, указывают направление скорости движения заряда, если он положительный, или противоположное скорости направление, если заряд отрицательный.

Вектор магнитной индукции, который всегда направлен перпендикулярно скорости, будет, таким образом, входить в ладонь. Теперь посмотрите, куда указывает большой палец – это и есть направление силы Лоренца.

Сила Лоренца может быть равна нулю и не иметь векторной составляющей. Это происходит в том случае, когда траектория заряженной частицы расположена параллельно силовым линиям магнитного поля. В таком случае частица имеет прямолинейную траекторию движения и постоянную скорость. Сила Лоренца никак не влияет на движение частицы, потому что в этом случае она вообще отсутствует.

В самом простом случае заряженная частица имеет траекторию движения, перпендикулярную силовым линиям магнитного поля. Тогда сила Лоренца создает центростремительное ускорение, вынуждая заряженную частицу двигаться по окружности.

Обратите внимание

Сила Лоренца была открыта в 1892 году Хендриком Лоренцом, физиком из Голландии. Сегодня она достаточно часто применяется в различных электроприборах, действие которых зависит от траектории движущихся электронов. Например, это электронно-лучевые трубки в телевизорах и мониторах. Всевозможные ускорители, разгоняющие заряженные частицы до огромных скоростей, посредством силы Лоренца задают орбиты их движения.

Полезный совет

Частным случаем силы Лоренца является сила Ампера. Ее направление вычисляют по правилу левой руки.

Источники:

  • Сила Лоренца
  • сила лоренца правило левой руки

Действие магнитного поля на проводник с током означает, что магнитное поле влияет на движущиеся электрические заряды. Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь голландского физика Х. Лоренца

Инструкция

Сила - , значит можно определить ее числовое значение (модуль) и направление (вектор).

Модуль силы Лоренца (Fл)равен отношению модуля силы F, действующей на участок проводника с током длиной ∆l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника: Fл = F/N ( 1). Вследствие, несложных физических преобразований, силу F можно представить в виде: F= q*n*v*S*l*B*sina (формула 2), где q – заряд движущейся , n – на участке проводника, v – скорость частицы, S –площадь поперечного сечения участка проводника, l –длина участка проводника, B – магнитная индукция, sina – синус угла между векторами скорости и индукции. А количество движущихся частиц преобразовать до вида: N=n*S*l (формула 3). Подставьте формулы 2 и 3 в формулу 1, сократите величины n, S, l, получается для силы Лоренца: Fл = q*v*B*sin a. Значит, для решения простых задач на нахождение силы Лоренца, определите в условии задания следующие физические величины: заряд движущейся частицы, ее скорость, индукцию магнитного поля, в которой частица движется, и угол между скоростью и индукцией.

Перед решением задачи убедитесь, что все величины измерены в соответствующих друг другу или интернациональной системе единицах. Для получения в ответе ньютонов (Н - единица силы), заряд должен измеряться в кулонах (К), скорость – в метрах на секунду (м/с), индукция – в теслах (Тл), синус альфа – не измеряемое число.
Пример 1. В магнитном поле, индукция которого 49 мТл, движется заряженная частица 1 нКл, со скоростью 1 м/с. Векторы скорости и магнитной индукции взаимоперпендикулярны.
Решение. B = 49 мТл = 0,049 Тл, q =1 нКл = 10 ^ (-9) Кл, v = 1 м/с, sin a = 1, Fл = ?

Fл = q*v*B*sin a = 0,049 Тл * 10 ^ (-9) Кл * 1 м/с * 1 =49* 10 ^(12).

Направление силы Лоренца определяется правилом левой руки. Для его применения представьте следующее взаиморасположение трех перпендикулярных друг другу векторов. Расположите левую руку так, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены в сторону движения положительной (против движения отрицательной) частицы, тогда отогнутый на 90 градусов большой палец укажет направление силы Лоренца см рисунок).
Применяется сила Лоренца в телевизионных трубках мониторов, телевизоров.

Источники:

  • Г. Я Мякишев, Б.Б. Буховцев. Учебник по физике. 11 класс. Москва. "Просвещение". 2003г
  • решение задач на силу лоренца

Истинным направлением тока является то, в котором движутся заряженные частицы. Оно, в свою очередь, зависит от знака их заряда. Помимо этого, техники пользуются условным направлением перемещения заряда, не зависящим от свойств проводника.

Инструкция

Для определения истинного направления перемещения заряженных частиц руководствуйтесь следующим правилом. Внутри источника они вылетают из электрода, который от этого заряжается с противоположным знаком, и движутся к электроду, который по этой причине приобретает заряд, по знаку аналогичный частиц. Во внешней же цепи они вырываются электрическим полем из электрода, заряд которого совпадает с зарядом частиц, и притягиваются к противоположно заряженному.

В металле носителями тока являются свободные электроны, перемещающиеся между узлами кристаллической . Поскольку эти частицы заряжены отрицательно, внутри источника считайте их движущимися от положительного электрода к отрицательному, а во внешней цепи - от отрицательного к положительному.

В неметаллических проводниках заряд переносят также электроны, но механизм их перемещения иной. Электрон, покидая атом и тем самым превращая его в положительный ион, заставляет его захватить электрон с предыдущего атома. Тот же электрон, который покинул атом, ионизирует отрицательно следующий. Процесс повторяется непрерывно, пока в цепи ток. Направление движения заряженных частиц в этом случае считайте тем же, что и в предыдущем случае.

Полупроводники двух видов: с электронной и дырочной проводимостью. В первом носителями являются электроны, и потому направление движения частиц в них можно считать таким же, как в металлах и неметаллических проводниках. Во втором же заряд переносят виртуальные частицы - дырки. Упрощенно можно сказать, что это своего рода пустые места, электроны в которых отсутствуют. За счет поочередного сдвига электронов дырки движутся в противоположном направлении. Если совместить два полупроводника, один из которых обладает электронной, а другой - дырочной проводимостью, такой прибор, называемый диодом, будет обладать выпрямительными свойствами.

В вакууме заряд переносят электроны, движущиеся от нагретого электрода (катода) к холодному (аноду). Учтите, что когда диод выпрямляет, катод является отрицательным относительно анода, но относительно общего провода, к которому присоединен противоположный аноду вывод вторичной обмотки трансформатора, катод заряжен положительно. Противоречия здесь нет, если учесть наличие падения напряжения на любом диоде (как вакуумном, так и полупроводниковом).

В газах заряд переносят положительные ионы. Направление перемещения зарядов в них считайте противоположным направлению их перемещения в металлах, неметаллических твердых проводниках, вакууме, а также полупроводниках с электронной проводимостью, и аналогичным направлению их перемещения в полупроводниках с дырочной проводимостью. Ионы значительно тяжелее электронов, отчего газоразрядные приборы обладают высокой инерционностью. Ионные приборы с симметричными электродами не обладают односторонней проводимостью, а с несимметричными - обладают ей в определенном диапазоне разностей потенциалов.

В жидкостях заряд всегда переносят тяжелые ионы. В зависимости от состава электролита, они могут быть как отрицательными, так и положительными. В первом случае считайте их ведущими себя аналогично электронам, а во втором - аналогично положительным ионам в газах или дыркам в полупроводниках.

При указании направления тока в электрической схеме, независимо от того, куда перемещаются заряженные частицы на самом деле, считайте их движущимися в источнике от отрицательного полюса к положительному, а во внешней цепи - от положительного к отрицательному. Указанное направление считается условным, а принято оно до открытия строения атома.

Источники:

  • направление тока

«Физика - 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?


1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α ,
а сила тока в проводнике равна I = qnvS
где
q - заряд частиц
n - концентрация частиц (т.е. число зарядов в единице объема)
v - скорость движения частиц
S - поперечное сечение проводника.

Тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца , равная:

где α - угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .


2.
Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки , что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца F л


3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна: = эл + л где сила, с которой электрическое поле действует на заряд q, равна F эл = q.


4.
Cила Лоренца не совершает работы , т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.
Движение заряженной частицы в однородном магнитном поле

Есть однородное магнитное поле , направленное перпендикулярно к начальной скорости частицы .

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что

В однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r .

Согласно второму закону Ньютона

Тогда радиус окружности по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.
Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне - ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

РЕФЕРАТ

По предмету «Физика» Тема: «Применение силы Лоренца»

Выполнил: Студент группы Т-10915 Логунова М.В.

Преподаватель Воронцов Б.С.

Курган 2016

Введение 3

1. Использование силы Лоренца 4

1.1. Электронно-лучевые приборы 4

1.2 Масс-спектрометрия 5

1.3 МГД генератор 7

1.4 Циклотрон 8

Заключение 10

Список использованной литературы 11

Введение

Сила Лоренца - сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует наточечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью υ заряд q лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического E и магнитного B полей.

В Международной системе единиц (СИ) выражается как:

F Л = q υ B sin α

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.

  1. Использование силы Лоренца

Действие, оказываемое магнитным полем на движущиеся заряженные частицы, очень широко используют в технике.

Основным применением силы Лоренца (точнее, её частного случая - силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках , в масс-спектрометрии и МГД-генераторах .

Также в созданных в настоящее время экспериментальных установках для осуществления управляемой термоядерной реакции действие магнитного поля на плазму используют для скручивания ее в шнур, не касающийся стенок рабочей камеры. Движение заряженных частиц по окружности в однородном магнитном поле и независимость периода такого движения от скорости частицы используют в циклических ускорителях заряженных частиц - циклотронах.

  1. 1. Электронно-лучевые приборы

Электронно-лучевые приборы (ЭЛП) - класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП - преобразование оптической информации в электрические сигналы и обратное преобразование электрического сигнала в оптический - например, в видимое телевизионное изображение.

В класс электронно-лучевых приборов не включаются рентгеновские трубки, фотоэлементы, фотоумножители, газоразрядные приборы (декатроны) и приёмно-усилительные электронные лампы (лучевые тетроды, электровакуумные индикаторы, лампы со вторичной эмиссией и тому подобное) с лучевой формой токов.

Электронно-лучевой прибор состоит, как минимум, из трёх основных частей:

    Электронный прожектор (пушка) формирует электронный луч (или пучок лучей, например, три луча в цветном кинескопе) и управляет его интенсивностью (током);

    Отклоняющая система управляет пространственным положением луча (отклонением его от оси прожектора);

    Мишень (экран) приёмного ЭЛП преобразует энергию луча в световой поток видимого изображения; мишень передающего или запоминающего ЭЛП накапливает пространственный потенциальный рельеф, считываемый сканирующим электронным лучом

Рис. 1 Устройство ЭЛТ

Общие принципы устройства.

В баллоне ЭЛТ создан глубокий вакуум. Для создания электронного луча применяется устройство, именуемое электронной пушкой. Катод, нагреваемый нитью накала, испускает электроны. Изменением напряжения на управляющем электроде (модуляторе) можно изменять интенсивность электронного луча и, соответственно, яркость изображения. Покинув пушку, электроны ускоряются анодом. Далее луч проходит через отклоняющую систему, которая может менять направление луча. В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие. Электронный луч попадает в экран, покрытый люминофором. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

ОПРЕДЕЛЕНИЕ

Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

Единица измерения силы – Н (ньютон) .

Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

Направление силы Лоренца определяют по правилу левой руки:

Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

Примеры решения задач по теме «Сила Лоренца»

ПРИМЕР 1

ПРИМЕР 2

Задание Под действием силы Лоренца частица массы m с зарядом q движется по окружности. Магнитное поле однородно, его напряжённость равна B. Найти центростремительное ускорение частицы.

Решение Вспомним формулу силы Лоренца:

Кроме того, по 2 закону Ньютона:

В данном случае сила Лоренца направлена к центру окружности и ускорение, ею создаваемое, направлено туда же, то есть это и есть центростремительное ускорение. Значит:

Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с , и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.

Определение

Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.

Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:

Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:

Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.

Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.

Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.

Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:

Как направлена сила Лоренца

Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.

Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.

При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.

Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.

Применение

Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.

Тем не менее, есть и другие случаи, где применяется это явление. Например:

  • Электронно-лучевые трубки. В их электромагнитных отклоняющих системах. ЭЛТ применялись больше чем 50 лет подряд в различных устройствах, начиная от простейшего осциллографа до телевизоров разных форм и размеров. Любопытно, что в вопросах цветопередачи и работы с графикой некоторые до сих пор используют ЭЛТ мониторы.
  • Электрические машины – генераторы и двигатели. Хотя здесь скорее действует сила Ампера. Но эти величины можно рассматривать как смежные. Однако это сложные устройства при работе которых наблюдается воздействие многих физических явлений.
  • В ускорителях заряженных частиц для того, чтобы задавать им орбиты и направления.

Заключение

Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:

  1. Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
  2. Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
  3. Не влияет на скорость частицы.
  4. Влияет на направление частицы.

Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.

Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы